附加题:在第26题中.抛物线的解析式和点D的坐标不变.当x > 0时.在直线(0 < k < 1)和这条抛物线上.是否分别存在点P和点Q.使四边形DOPQ为以OD为底的等腰梯形.若存在.求点P.Q的坐标,若不存在.说明理由. 查看更多

 

题目列表(包括答案和解析)

如图,直线ABx轴于点A(2,0),交抛物线于点B(1,),点C到△OAB各顶点的距离相等,直线ACy轴于点D.当x > 0时,在直线OC和抛物线上是否分别存在点P和点Q,使四边形DOPQ为特殊的梯形?若存在,求点PQ的坐标;若不存在,说明理由.

附加题:在上题中,抛物线的解析式和点D的坐标不变(如下图).当x > 0时,在直线(0 < k < 1)和这条抛物线上,是否分别存在点P和点Q,使四边形DOPQ为以OD为底的等腰梯形.若存在,求点PQ的坐标;若不存在,说明理由.

查看答案和解析>>

(1)如图1,直线AB交x轴于点A(2,0),交抛物线y=ax2于点B(1,
3
),点C到△OAB各顶点的距离相等,直线AC交y轴于点D.当x>0时,在直线OC和抛物线y=ax2上是否分别存在点P和点Q,使四边形DOPQ为特殊的梯形?若存在,求点P、Q的坐标;若不存在,说明理由.
(2)在(1)题中,抛物线的解析式和点D的坐标不变(如图2).当x>0时,在直线y=kx(0<k<1)和这条抛物线上,是否分别存在点P和点Q,使四边形DOPQ为以OD为底的等腰梯形.若存在,求点P、Q的坐标;若不存在,说明理由.精英家教网

查看答案和解析>>

(1)如图1,直线AB交x轴于点A(2,0),交抛物线y=ax2于点B(1,数学公式),点C到△OAB各顶点的距离相等,直线AC交y轴于点D.当x>0时,在直线OC和抛物线y=ax2上是否分别存在点P和点Q,使四边形DOPQ为特殊的梯形?若存在,求点P、Q的坐标;若不存在,说明理由.
(2)在(1)题中,抛物线的解析式和点D的坐标不变(如图2).当x>0时,在直线y=kx(0<k<1)和这条抛物线上,是否分别存在点P和点Q,使四边形DOPQ为以OD为底的等腰梯形.若存在,求点P、Q的坐标;若不存在,说明理由.

查看答案和解析>>

(1)如图1,直线AB交x轴于点A(2,0),交抛物线y=ax2于点B(1,),点C到△OAB各顶点的距离相等,直线AC交y轴于点D.当x>0时,在直线OC和抛物线y=ax2上是否分别存在点P和点Q,使四边形DOPQ为特殊的梯形?若存在,求点P、Q的坐标;若不存在,说明理由.
(2)在(1)题中,抛物线的解析式和点D的坐标不变(如图2).当x>0时,在直线y=kx(0<k<1)和这条抛物线上,是否分别存在点P和点Q,使四边形DOPQ为以OD为底的等腰梯形.若存在,求点P、Q的坐标;若不存在,说明理由.

查看答案和解析>>

如图,在直角坐标系中,已知点A(0,1),B(-4,4),将点B绕点A顺时针方向90°得到点C;顶点在坐标原点的拋物线经过点B.
(1)求抛物线的解析式和点C的坐标;
(2)抛物线上一动点P,设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2=d1+1;
(3)在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PA精英家教网C的周长的最小值.

查看答案和解析>>


同步练习册答案