17.在下图中.若∠A+∠B=180°.则∠1= .∠2= . 查看更多

 

题目列表(包括答案和解析)

(1)在图1中,已知∠MAN=120°,AC平分∠MAN。∠ABC=∠ADC=90°,则能得如下两个结论:① DC = BC;②AD+AB=AC。请你证明结论②;
(2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°” 改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由。
  

查看答案和解析>>

直线CD经过∠BCA的顶点C,CA=CB,E、F是直线CD上两点,∠BEC=∠CFA=∠α。
(1)若直线CD经过∠BCA的内部,且点E、F在射线CD上,请解决下面两个问题:
①如图(1),若∠BCA=90°,∠α=90°,则EF______|BE-AF|(填 “<”“>”或“=”);
②如图(2),当0°<∠BCA< 180°时,若使①中的结论仍然成立,则∠α与∠BCA应满足的关系是____;
(2)如图(3),若直线CD经过∠BCA的外部,且∠α=∠BCA,请探究EF、BE、AF三条线段的数量关系,并给予证明。

查看答案和解析>>

CD是经过∠BCA顶点C的一条直线,CA=CB,E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α。
⑴若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,则BE_____CF; EF_____|BE-AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件_____,使①中的两个结论仍然成立,并证明两个结论成立;
⑵如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明)。

查看答案和解析>>

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。

(1)思路梳理

∵AB=CD,

∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。

∵∠ADC=∠B=90°,

∴∠FDG=180°,点F、D、G共线。

根据    ,易证△AFG≌    ,得EF=BE+DF。

(2)类比引申

如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系    时,仍有EF=BE+DF。

(3)联想拓展

如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。

 

查看答案和解析>>

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。
(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线。
根据    ,易证△AFG≌    ,得EF=BE+DF。
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系    时,仍有EF=BE+DF。
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。

查看答案和解析>>


同步练习册答案