(1)取BE的中点O.连OC.∵BC=CE.∴OC⊥BE.又AB⊥平面BCE.以O为原点建立空间直角坐标系O―xyz.如图.则已知条件有: 查看更多

 

题目列表(包括答案和解析)

如图所示,已知PA⊥平面ABCD,PA=AB=AD=2,AC与BD交于E点,BD=2,BC=CD=
2

(1)取PD的中点F,求证:PB∥平面AFC;
(2)求多面体PABCF的体积.

查看答案和解析>>

精英家教网已知矩形ABCD中,AB=2
2
,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.
(1)求以A,B为焦点,且过C,D两点的椭圆的标准方程;
(2)过点P(0,2)的直线l与(1)中的椭圆交于M,N两点,是否存在直线l,使得以线段MN为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

长方形ABCD,AB=2
2
,BC=1,以AB的中点O为原点建立如图所示的平面直角坐标系.
(1)求以A、B为焦点,且过C、D两点的椭圆的标准方程:
(2)过点p(0,2)的直线m与(1)中椭圆只有一个公共点,求直线m的方程:
(3)过点p(0,2)的直线l交(1)中椭圆与M,N两点,是否存在直线l,使得以弦MN为直径的圆恰好过原点?若存在,直线l的方程;若不存在,说明理由.

查看答案和解析>>

已知长方形ABCD,AB=2
2
,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.椭圆Γ以A、B为焦点,且过C、D两点.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)过点P(0,2)的直线l交椭圆Γ于M,N两点,是否存在直线l,使得OM⊥ON?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

精英家教网如图,在四棱锥A-BCDE中,底面BCDE为矩形,AB=AC,BC=2,CD=1,并且侧面ABC⊥底面BCDE.
(1)取CD的中点为F,AE的中点为G,证明:FG∥面ABC;
(2)试在线段BC上确定点M,使得AE⊥DM,并加以证明.

查看答案和解析>>


同步练习册答案