24.在学习勾股定理时.我们学会运用图(I)验证它的正确性:图中大正方形的面积可表示为.也可表示为.即由此推出勾股定理.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法.简称“无字证明 . 查看更多

 

题目列表(包括答案和解析)

(本小题10分)在平面直角坐标系中,将直线l:沿x轴翻折,得到一条新直线与x轴交于点A,与y轴交于点B,将抛物线沿x轴平移,得到一条新抛物线与y轴交于点D,与直线AB交于点E、点F.
(Ⅰ)求直线AB的解析式;
(Ⅱ)若线段DF∥x轴,求抛物线的解析式;
(Ⅲ)在(2)的条件下,若点F在y轴右侧,过F作FH⊥x轴于点G,与直线l交于点H,一条直线m(m不过△AFH的顶点)与AF交于点M,与FH交于点N,如果直线m既垂直于直线AB又平分△AFH的面积,求直线m的解析式.

查看答案和解析>>

(本小题10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙

O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知A,

B两点的坐标分别为A(0,2),B(-2,0).

(1)求C,D两点的坐标.

(2)求证:EF为⊙O1的切线.

(3)探究:如图13,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.

 

查看答案和解析>>

(本小题10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙
O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知A,
B两点的坐标分别为A(0,2),B(-2,0).
(1)求C,D两点的坐标.
(2)求证:EF为⊙O1的切线.
(3)探究:如图13,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.

查看答案和解析>>

(本小题10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙

O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知A,

B两点的坐标分别为A(0,2),B(-2,0).

(1)求C,D两点的坐标.

(2)求证:EF为⊙O1的切线.

(3)探究:如图13,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.

 

查看答案和解析>>

(本小题10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD为直径作⊙
O1,交BC于点E,过点E作EF⊥AB于F,建立如图12所示的平面直角坐标系,已知A,
B两点的坐标分别为A(0,2),B(-2,0).
(1)求C,D两点的坐标.
(2)求证:EF为⊙O1的切线.
(3)探究:如图13,线段CD上是否存在点P,使得线段PC的长度与P点到y轴的距离相等?如果存在,请找出P点的坐标;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案