如图.将边长为1的正方形网格放在直角坐标系中.以O点为位似中心在y轴的左侧将四边形OABC放大到两倍.请画出放大后的四边形. 查看更多

 

题目列表(包括答案和解析)

如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(Ⅰ)计算AC2+BC2的值等于
 

(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)
 

查看答案和解析>>

如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.

(1)△ABC的面积等于    

(2)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)    

 

查看答案和解析>>

如图①,将两个等腰直角三角形叠放在一起,使上面三角板的一个锐角顶点与下面三角板的直角顶点重合,并将上面的三角板绕着这个顶点逆时针旋转,在旋转过程中,当下面三角板的斜边被分成三条线段时,我们来研究这三条线段之间的关系.
(1)实验与操作:
如图②,如果上面三角板的一条直角边旋转到CM的位置时,它的斜边恰好旋转到CN的位置,请在网格中分别画出以AM、MN和NB为边长的正方形,观察这三个正方形的面积之间的关系;
(2)猜想与探究:
如图③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB边上的点,∠MCN=45°,作DA⊥AB于点A,截取DA=NB,并连接DC、DM.
我们来证明线段CD与线段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于点A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

请你继续解答:
①线段MD与线段MN相等吗?为什么?
②线段AM、MN、NB有怎样的数量关系,为什么?
(3)拓广与运用:
如图④,已知线段AB上任意一点M(AM<MB),是否总能在线段MB上找到一点N,使得分别以AM与BN为边长的正方形的面积的和等于以MN为边长的正方形的面积?若能,请在图④中画出点N的位置,并简要说明作法;若不能,请说明理由.

查看答案和解析>>

如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.
(Ⅰ)△ABC的面积等于________;
(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)________.

查看答案和解析>>

如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.
(Ⅰ)△ABC的面积等于   
(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)   

查看答案和解析>>


同步练习册答案