(1)写出上面问题中线段与的位置关系及的值, 查看更多

 

题目列表(包括答案和解析)

问题背景:

如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是射线CB上任意一点,△ADE是等边三角形,且点E在∠ACB的内部,连接BE.试探究线段BEDE之间的数量关系.

探究结论:

先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.

(1)当点D与点C重合时(如图2),请你补全图形.由∠BAC的度数为________,点E落在AB上,容易得出BEDE之间的数量关系为________

(2)当点D在如图3的位置时,请你画出图形,研究线段BEDE之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.

拓展应用:

(3)如图4,在平面直角坐标系xOy中,点A的坐标为(,1),点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x的函数关系式.

查看答案和解析>>

已知:矩形ABCD中,M为BC边上一点, AB=BM=10,MC=14,如图1,正方形EFGH的顶点E和点B重合,点F、G、H分别在边AB、AM、BC上.如图2,P为对角线AC上一动点,正方形EFGH从图1的位置出发,以每秒1个单位的速度沿BC向点C匀速移动;同时,点P从C点出发,以每秒1个单位的速度沿CA向点A匀速移动.当点F到达线段AC上时,正方形EFGH和点P同时停止运动.设运动时间为t秒,解答下列问题:
(1)在整个运动过程中,当点F落在线段AM上和点G落在线段AC上时,分别求出对应t的值;
(2)在整个运动过程中,设正方形重叠部分面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;
(3)在整个运动过程中,是否存在点P,使是以DG为腰的等腰三角形?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

已知:矩形ABCD中,M为BC边上一点, AB=BM=10,MC=14,如图1,正方形EFGH的顶点E和点B重合,点F、G、H分别在边AB、AM、BC上.如图2,P为对角线AC上一动点,正方形EFGH从图1的位置出发,以每秒1个单位的速度沿BC向点C匀速移动;同时,点P从C点出发,以每秒1个单位的速度沿CA向点A匀速移动.当点F到达线段AC上时,正方形EFGH和点P同时停止运动.设运动时间为t秒,解答下列问题:
(1)在整个运动过程中,当点F落在线段AM上和点G落在线段AC上时,分别求出对应t的值;
(2)在整个运动过程中,设正方形重叠部分面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;
(3)在整个运动过程中,是否存在点P,使是以DG为腰的等腰三角形?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

已知,在矩形ABCD中,E为BC边上一点,,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图1,现有一张硬质纸片,,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图2,从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,和点P同时停止运动.设运动时间为t秒,解答下列问题:

(1)在整个运动过程中,当点G在线段AE上时,求t的值;

(2)在整个运动过程中,是否存在点P,使是等腰三角形,若存在,求出t的值;若不存在,说明理由;

(3)在整个运动过程中,设重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.

查看答案和解析>>

在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作等腰Rt△ADE.
(1)如果AB=AC,∠BAC=90°.
解答下列问题:
①如图1,当点D在线段BC上时(与点B不重合),线段CE、BD之间的位置关系为
CE⊥BD
CE⊥BD
,数量关系为
CE=BD
CE=BD

②当点D在线段BC的延长线上时,如图2,线段CE、BD之间的位置关系为
CE⊥BD
CE⊥BD
,数量关系为
CE=BD
CE=BD

请在上面①②两个结论中任选一个说明理由.
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足∠BCA=
45°
45°
时,CE⊥BC(点C、E重合除外)?请在图3中画出相应图形,并说明理由.(画图不写作法)

查看答案和解析>>


同步练习册答案