题目列表(包括答案和解析)
已知函数f(t)满足对任意实数x、y都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.
(1)求f(1)的值;
(2)证明:对一切大于1的正整数t,恒有f(t)>t;
(3)试求满足f(t)=t的整数t的个数,并说明理由.
| f(x2)-f(x1) |
| x2-x1 |
| f(b)-f(a) |
| b-a |
| b-a |
| b |
| b |
| a |
| b-a |
| a |
| 1 |
| x |
| x |
| y |
一、选择题: C C D B D A A C B B A D

(2)由(Ⅰ)
,
.
的可能取值为:
、
、
、
.
则
;
;
;
.…………9分
∴
的分布列为










的数学期望
.…………12分
故二面角
的大小为
…………………………12分

解法二:如图,以
为原点,建立空间直角坐标系,使
轴,
、
分别在
轴、
轴上。

20.解:(1)由题意知
即
……2分
∴
……5分
检验知
、
时,结论也成立,故
.…………6分
(2)由于
,故

.…………12分
21.解:(1)设
,由
知:R是TN的中点,…………………1分
则T(-x,0),R(0,
),
=O 则(-x,-
)?(1,-
)=0………………3分
∴ 点N的轨迹曲线C的方程为:
……………5分
(2)设直线
的方程为
,代入曲线C的方程
得:
此方程有两个不等实根,
……………6分
M在曲线C上,P、Q是直线
与曲线C的交点,
设
则
,
是以PQ为斜边的直角三角形
……8分
,
,有
由于
,
∴
∴
…………10分
t为点M的纵坐标,
关于
的方程
有实根,

,
直线
的斜率
且
,
或
…12分
22.解(1)
∴
的增区间为
,
减区间为
和
.…………3分
极大值为
,极小值为
.…………5分
(2)原不等式可化为
由(1)知,
时,
的最大值为
.
∴
的最大值为
,由恒成立的意义知道
,从而
…8分
(3)设
则
.
∴当
时,
,故
在
上是减函数,
又当
、
、
、
是正实数时,
∴
.
由
的单调性有:
,
即
.…………12′
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com