题目列表(包括答案和解析)
△ABC中,AB>AC,AD、AE分别是BC边上的中线和∠A的平分线,则AD和AE的大小关系是AD AE。(填“>”、“<”或“=”)
在△ABC中,AC=BC=2,∠C=900,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。图①,②,③是旋转三角板得到的图形中的3种情况。
研究:
(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系?并结合图②加以证明。
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由。
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图④加以证明。
已知Rt△ABC中,∠ACB=90º,BC=5,tan∠A=
,现将△ABC绕着点C逆时针旋转
(45º<
<135º)得到△DCE,设直线DE与直线AB相交于点P,连接CP。
(1)当CD⊥AB时(如图1),求证:PC平分∠EPA;
(2)当点P在边AB上时(如图2),求证:PE+PB=6;
(3)在△ABC旋转过程中,连接BE,当△BCE的面积为
时,求∠BPE的度数及PB的长。
![]()
![]()
![]()
已知,△ABC中,AB中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,求AC得( )。
A. 15 B. 16
C. 17 D. 18
如图,在△ABC中,∠C=90°,AC=8,BC=6。P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N设AP=x。![]()
(1)在△ABC中,AB= ;
(2)当x= 时,矩形PMCN的周长是14;
(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com