24.如图1.E.F.M.N是正方形ABCD四条边AB.BC.CD.DA上可以移动的四个点.每组对边上的两个点.可以连接成一条线段. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN ∥OB交CD于N.

1.⑴求证:MN是⊙O的切线;

2.⑵当0B=6cm,OC=8cm时,求⊙O的半径及图中阴影部分的面积.

 

查看答案和解析>>

 (本小题满分12分)

如图,RtΔABC中,∠ACB=90°,AC=4,BA=5,点PAC上的动点(P不与A、C重合)PQAB,垂足为Q.设PC=xPQ= y

1.⑴求yx的函数关系式;

2.⑵试确定此RtΔABC内切圆I的半径,并探求x为何值时,直线PQ与这个内切圆I相切?

3.⑶若0<x<1,试判断以P为圆心,半径为y的圆与⊙I能否相内切,若能求出相应的x的值,若不能,请说明理由.

 

查看答案和解析>>

(本小题满分12分)

如图,反比例函数的图象经过A、B两点,根据图中信息解答下列问题:

1.(1)写出A点的坐标;

2.(2)求反比例函数的解析式;

3.(3)若点A绕坐标原点O旋转90°后得到点C,请写出点C的坐标;并求出直线BC的解析式.

 

查看答案和解析>>

(本小题满分12分)

如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=16 cm, OC=8cm,现有两动点PQ分别从OC同时出发,P在线段OA上沿OA方向以每秒2 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动.设运动时间为t秒.

(1)用含t的式子表示△OPQ的面积S

(2)判断四边形OPBQ的面积是否是一个定值,如果是,请求出这个定值;如果不是,请说明理由;

(3)当△OPQ∽△ABP时,抛物线yx2+bx+c经过B、P两点,求抛物线的解析式;

(4)在(3)的条件下,过线段BP上一动点M轴的平

行线交抛物线于N,求线段MN的最大值.

 

 

 

 

查看答案和解析>>

(本小题满分12分)

如图,⊙O的半径为6cm,射线PM与⊙O相切于点C,且PC=16cm.

(1)请你作出图中线段PC的垂直平分线EF,垂足为Q,并求出QO的长;

(2)在(1)的基础上画出射线QO,分别交⊙O于点A、B,将直线EF沿射线QM方向以5cm/s的速度平移(平移过程中直线EF始终保持与PM垂直),设平移时间为t.当t为何值时,直线EF与⊙O相切?

(3)直接写出t为何值时,直线EF与⊙O无公共点?t为何值时,

·

 
直线EF与⊙O有两个公共点?

 

查看答案和解析>>


同步练习册答案