六. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分,任选一题作答.)
Ⅰ、如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当0<t<
52
时,证明DC⊥OA;
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、E、D为顶点的四边形是梯形,求点E的坐标.
Ⅱ、(1)如图Ⅱ-1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图Ⅱ-2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
(3)如图Ⅱ-3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.

查看答案和解析>>

(本题满分12分)一名篮球运动员传球,球沿抛物线y=-x2+2x+4运行,传球时,球的出手点P的高度为1.8米,一名防守队员正好处在抛物线所在的平面内,他原地竖直起跳的最大高度为3.2米,
问:【小题1】(1)球在下落过程中,防守队员原地竖直起跳后在到达最大高度时刚好将球断掉,那么传球时,两人相距多少米?
【小题2】(2)要使球在运行过程中不断防守队员断掉,且仍按抛物线y=-x2+2x+4运行,那么两人间的距离应在什么范围内?(结果保留根号)

查看答案和解析>>

(本题满分12分) 如图,在平面直角坐标系中,抛物线与x轴交于点A、B

(点A在点B的左侧),与y轴交于点C(0,4),顶点为(1,).

(1)求抛物线的函数解析式;

(2)抛物线的对称轴与x轴交于点D,点P在对称轴上且使△CDP为等腰三角形.请直接写出满足条件的所有点的坐标P;

(3)若点E是线段AB上的一个动点(与点A、B不重合),连接AC、BC,过点E作EF∥AC交线段BC于点F,连接CE,记△CEF的面积为S,S是否存在最大值?若存在,请求出S的最大值及此时点E的坐标;若不存在,请说明理由.

 

查看答案和解析>>

计算(本题满分12分,每题4分)
(1)   ―12012 + ()-1―(3.14-π)0 
(2) (-6xy2)2(― xy +  y2 ―x2
(3) 先化简,再求值:(2m+n)2-(3mn)2+5m(mn),其中m=n=

查看答案和解析>>

(本题满分12分)春节期间,七(1)班的李平、王丽等同学随家长一同到某公园游玩,下面是购买门票时,李平与他爸爸的对话(如图),试根据图中的信息,解答下列问题:

⑴李平他们一共去了几个成人,几个学生?
⑵请你帮助算一算,用哪种方式购票更省钱?说明理由。
⑶购完票后,李平发现七⑵班的张明等8名同学和他们的12名家长共20人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.

查看答案和解析>>


同步练习册答案