(15)如图.在正方形ABCD中.点E是BC上的一定点.且BE=10.EC=14,点P是BD上的一动点.则PE+PC的最小值是 查看更多

 

题目列表(包括答案和解析)

28、小明在研究正方形的有关问题时发现有这样一道题:“如图①,在正方形ABCD中,点E是CD的中点,点F是BC边上的一点,且∠FAE=∠EAD.你能够得出什么样的正确的结论?”
(1)小明经过研究发现:EF⊥AE.请你对小明所发现的结论加以证明;
(2)小明之后又继续对问题进行研究,将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图②、图③、图④),其它条件均不变,认为仍然有“EF⊥AE”.你同意小明的观点吗?若你同意小明的观点,请取图③为例加以证明;若你不同意小明的观点,请说明理由.

查看答案和解析>>

如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过点A作AF⊥AE交DP于点F,连接BF.
(1)若AE=2,求EF的长;
(2)求证:PF=EP+EB.

查看答案和解析>>

如图,在正方形ABCD中,点E是AB中点,点F是AD上一点,且DE=CF,ED、FC交于点G,连接BG,BH平分
∠GBC交FC于H,连接DH.
(1)若DE=10,求线段AB的长;
(2)求证:DE-HG=EG.

查看答案和解析>>

(2008•顺义区二模)已知:如图,在正方形ABCD中,点G是BC延长线一点,连接AG,分别交BD、CD于点E、F.
(1)求证:∠DAE=∠DCE;
(2)当CG=CE时,试判断CF与EG之间有怎样的数量关系?并证明你的结论.
(3)在(2)的条件下,求
DFFC
的值.

查看答案和解析>>

24、(1)如图,在正方形ABCD中,点E是CD的中点,点F是BC边上一点,且∠FAE=∠EAD,求证:EF⊥AE.
(2)若将(1)中的“正方形”改为“矩形”、“菱形”和“任意平行四边形”,其它条件不变,则是否仍有“EF⊥AE”的结论.若结论都成立,选取一种画出图形,并简单说明理由,若不成立,也请画图说明理由.

查看答案和解析>>


同步练习册答案