(1)设.的边长分别为..圆O的半径为.求及的值, 查看更多

 

题目列表(包括答案和解析)

如图①,在长为6厘米,宽为3厘米的矩形PQMN中,有两张边长分别为二厘米和一厘米的正方形纸片ABCD和EFGH,且BC且在PQ上,PB=1厘米,PF=
1
2
厘米,从初始时刻开始,纸片ABCD沿PQ以2厘米每秒的速度向右平移,同时纸片EFGH沿PN以1厘米每秒的速度向上平移,当C点与Q点重合时,两张图片同时停止移动,设平移时间为t秒时,(如图②),纸片ABCD扫过的面积为S1,纸片EFGH扫过的面积为S2,AP,PG,GA所围成的图形面积为S(这里规定线段面积为零,扫过的面积含纸片面积).解答下列问题:
(1)当t=
1
2
时,PG=
 
,PA=
 
时,PA
 
PG+GA(填=或≠);
(2)求S与t之间的关系式;
(3)请探索是否存在t值(t>
1
2
),使S1+S2=4S+5.若存在,求出t值;若不存在,说明理由.精英家教网

查看答案和解析>>

如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为(  )
精英家教网
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

20、探索这样一个问题:“任意给定一个矩形A,是否存在矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”
(1)当已知矩形A的边长分别为6和1时,小明是这样研究的:设所求矩形的一边长为x,则另一边长为(3.5-x),由题意得方程:x(3.5-x)=3即 x2-3.5x+3=0.∵△=(3.5)2-4×(2)1×(3)3=0.25>0∴x1=
2
x2=
1.5
∴满足要求的矩形B存在.
(2)如果已知矩形A的边长分别为2和1,请你仿照小明的方法研究是否存在满足要求的矩形B.

查看答案和解析>>

把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,
(1)如图①,当点E在射线CB上时,E点坐标为
 

(2)当△CBD是等边三角形时,旋转角a的度数是
 
(a为锐角时);
(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标;
(4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.
精英家教网

查看答案和解析>>

直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,求BE的长.
思路点拨:折叠之后,边AC被分成了两部分,其中AE折叠后变为图中的线段
BE
BE
,但BE与CE的和仍然是8,不妨设BE=x,则CE=
8-x
8-x
,可以将问题转化到△ABC来解决.请你完成解题过程.)

查看答案和解析>>


同步练习册答案