24.列方程组或不等式组解应用题:某电器经营业主计划购进一批同种型号的空调和电风扇.若购进8台空调和20台电风扇.则需要资金17400元,.若购进10台空调和30台电风扇.则需要资金22500元(1)求空调和电风扇每台的采购价各是多少元?(2)该经营业主计划购进这两种电器共70台.而可用于购买这两种电器的资金不超过30000元.根据市场行情.销售一台这样的空调可获利200元.销售一台这样的电风扇可获利30元.该业主希望当这两种电器销售完时.所获得的利润不少于3500元.试问该经营业主有哪几种进货方案?哪种方案获利最大?最大利润是多少? 查看更多

 

题目列表(包括答案和解析)

列方程解应用题:
(1)某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张
(2)某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司加工的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案.
方案一:将蔬菜全部进行精加工.没来得及进行精加工的直接出售
方案二:尽可能多地对蔬菜进行粗加工,没有来得及进行加工的蔬菜,在市场上直接销售.
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.
你认为选择哪种方案获利最多?为什么?

查看答案和解析>>

列方程(组)或不等式(组)解应用题:
(1)某校的一间阶梯教室,第1排的座位数为a,从第2排开始,每一排都比前一排增加b个座位.
1、请你在下表的空格里填写一个适当的代数式:
第1排的座位数 第2排的座位数 第3排的座位数 第4排的座位数
a a+b a+2b
2、已知第4排有18个座位,第15排座位数是第5排座位数的2倍,求第1排有多少个座位?
(2)某校初一、初二两年段学生参加社会实践活动,原计划租用48座客车若干辆,但还有24人无座位坐.
①设原计划租用48座客车x辆,试用含x的代数式表示这两个年段学生的总人数;
②现决定租用60座客车,则可比原计划租48座客车少2辆,且所租60座客车中有一辆没有坐满,但这辆车已坐的座位超过36位.请你求出该校这两个年段学生的总人数.

查看答案和解析>>

列方程(组)或不等式(组)解应用题:
每年的5月20日是中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?

查看答案和解析>>

列方程(组)或不等式(组)解应用题:
(1)某校的一间阶梯教室,第1排的座位数为a,从第2排开始,每一排都比前一排增加b个座位.
1、请你在下表的空格里填写一个适当的代数式:
第1排的座位数第2排的座位数第3排的座位数第4排的座位数
aa+ba+2b
2、已知第4排有18个座位,第15排座位数是第5排座位数的2倍,求第1排有多少个座位?
(2)某校初一、初二两年段学生参加社会实践活动,原计划租用48座客车若干辆,但还有24人无座位坐.
①设原计划租用48座客车x辆,试用含x的代数式表示这两个年段学生的总人数;
②现决定租用60座客车,则可比原计划租48座客车少2辆,且所租60座客车中有一辆没有坐满,但这辆车已坐的座位超过36位.请你求出该校这两个年段学生的总人数.

查看答案和解析>>

列方程(组)或不等式(组)解应用题:
(1)某校的一间阶梯教室,第1排的座位数为a,从第2排开始,每一排都比前一排增加b个座位.
1、请你在下表的空格里填写一个适当的代数式:
第1排的座位数 第2排的座位数 第3排的座位数 第4排的座位数
a a+b a+2b
2、已知第4排有18个座位,第15排座位数是第5排座位数的2倍,求第1排有多少个座位?
(2)某校初一、初二两年段学生参加社会实践活动,原计划租用48座客车若干辆,但还有24人无座位坐.
①设原计划租用48座客车x辆,试用含x的代数式表示这两个年段学生的总人数;
②现决定租用60座客车,则可比原计划租48座客车少2辆,且所租60座客车中有一辆没有坐满,但这辆车已坐的座位超过36位.请你求出该校这两个年段学生的总人数.

查看答案和解析>>


同步练习册答案