20.函数分别交轴于A.B两点.O是原点.(1)求△ABO的面积,(2)过△ABO的顶点能否画出直线将△ABO分成面积相等的两部分?若能.可以画几条?写出这样的直线的解析式. 查看更多

 

题目列表(包括答案和解析)

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线x=上。
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由。
(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N。设点M的横坐标为t,MN的长度为l。求l与t之间的函数关系式,并求l取最大值时,点M的坐标。

查看答案和解析>>

如图,过A(8,0)、B(0,)两点的直线与直线交于点C、平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l分别交线段BC、OC于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线l的运动时间为t(秒)。
(1)直接写出C点坐标和t的取值范围;
(2)求S与t的函数关系式;
(3)设直线l与x轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

如图,过A(8,0)、B(0,8)两点的直线与直线y=x交于点C,平行于y轴的直线l从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l分别交线段BC、OC于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线l的运动时间为t(秒)。
(1)直接写出C点坐标和t的取值范围;
(2)求S与t的函数关系式;
(3)设直线l与x轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

如图1,在平面直角坐标系中,抛物线过原点O,点A(10,0)和点B(2,2),在线段OA上,点P从点O向点A运动,同时点Q从点A向点O运动,运动过程中保持AQ=2OP,当P、Q重合时同时停止运动,过点Q作x轴的垂线,交直线AB于点M,延长QM到点D,使MD=MQ,以QD为对角线作正方形QCDE(正方形QCDE岁点Q运动)。
(1)求这条抛物线的函数表达式;
(2)设正方形QCDE的面积为S,P点坐标(m,0)求S与m之间的函数关系式;
(3)过点P作x轴的垂线,交抛物线于点N,延长PN到点G,使NG=PN,以PG为对角线作正方形PFGH(正方形PFGH随点P运动),当点P运动到点(2,0)时,如图2,正方形PFGH的边GP和正方形QCDE的边EQ落在同一条直线上。
①则此时两个正方形中在直线AB下方的阴影部分面积的和是多少?
②若点P继续向点A运动,还存在两个正方形分别有边落在同一条直线上的情况,请直接写出每种情况下点P的坐标,不必说明理由。

查看答案和解析>>

如图14所示,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+[x/6]+c的图象F交x轴于B、C两点,交y轴于M点,其中B(-3,0),M(0,-1)。已知AM=BC。

[1]求二次函数的解析式;

[2]证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;

[3]在[2]的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N。

①若直线l⊥BD,如图14所示,试求[1/BP]+[1/BQ]的值;

②若l为满足条件的任意直线。如图15所示,①中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例。

 


查看答案和解析>>


同步练习册答案