题目列表(包括答案和解析)
在△ABC中,a、b、c分别是角A、B、C的对边,cosB=
.
⑴ 若cosA=-
,求cosC的值; ⑵
若AC=
,BC=5,求△ABC的面积.
【解析】第一问中sinB=
=
, sinA=
=![]()
cosC=cos(180°-A-B)=-cos(A+B) =sinA.sinB-cosA·cosB
=
×
-(-
)×
=![]()
第二问中,由
=
+
-2AB×BC×cosB得 10=
+25-8AB
解得AB=5或AB=3综合得△ABC的面积为
或![]()
解:⑴ sinB=
=
, sinA=
=
,………………2分
∴cosC=cos(180°-A-B)=-cos(A+B) ……………………3分
=sinA.sinB-cosA·cosB ……………………4分
=
×
-(-
)×
=
……………………6分
⑵ 由
=
+
-2AB×BC×cosB得 10=
+25-8AB
………………7分
解得AB=5或AB=3, ……………………9分
若AB=5,则S△ABC=
AB×BC×sinB=
×5×5×
=
………………10分
若AB=3,则S△ABC=
AB×BC×sinB=
×5×3×
=
……………………11分
综合得△ABC的面积为
或![]()
对某班级
名学生学习数学与学习物理的成绩进行调查,得到如下表所示:
|
|
数学成绩较好 |
数学成绩一般 |
合计 |
|
物理成绩较好 |
18 |
7 |
25 |
|
物理成绩一般 |
6 |
19 |
25 |
|
合计 |
24 |
26 |
50 |
由
,解得![]()
|
|
0.050 |
0.010 |
0.001 |
|
|
3.841 |
6.635 |
10.828 |
参照附表,得到的正确结论是( )
(A)在犯错误的概率不超过
的前提下,认为“数学成绩与物理成绩有关”
(B)在犯错误的概率不超过
的前提下,认为“数学成绩与物理成绩无关”
(C)有
的把握认为“数学成绩与物理成绩有关”
(D)有
以上的把握认为“数学成绩与物理成绩无关”
某港口的水深
(米)是时间
(
,单位:小时)的函数,下面是每天时间与水深的关系表:
|
|
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
|
|
10 |
13 |
9.9 |
7 |
10 |
13 |
10.1 |
7 |
10 |
经过长期观测,
可近似的看成是函数
,(本小题满分14分)
(1)根据以上数据,求出
的解析式。
(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
【解析】第一问由表中数据可以看到:水深最大值为13,最小值为7,,
∴A+b=13, -A+b=7 解得 A=3, b=10
第二问要想船舶安全,必须深度
,即![]()
∴
解得:
得到结论。
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵
,∴
,…………………1分
∵
,得到三角关系是
,结合
,解得。
(2)由
,解得
,
,结合二倍角公式
,和
,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②联立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
将①代入②中,可得
③ …………………4分
将③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,从而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
综上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
综上可得
…………………12分
(若用
,又∵
∴
,
为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:
[10.75,10.85),3;[10.85,10.95),9;[10.95,11.05),13;[11.05,11.15),16;[11.15,11.25),26;[11.25,?11.35?),20;[11.35,11.45),7;[11.45,11.55),4;[11.55,11.65),2;
(1)列出频率分布表(含累积频率);
(2)画出频率分布直方图以及频率分布折线图;
(3)据上述图表,估计数据落在[10.95,11.35)范围内的可能性是百分之几?
(4)数据小于11.20的可能性是百分之几?
思路解析:按解题程序解出即可。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com