4.掌握知识之间的联系.进一步培养观察.分析.归纳.概括和综合分析能力.以解析式表示的函数作图象的方法有两种.即列表描点法和图象变换法.掌握这两种方法是本节的重点.运用描点法作图象应避免描点前的盲目性.也应避免盲目地连点成线.要把表列在关键处.要把线连在恰当处.这就要求对所要画图象的存在范围.大致特征.变化趋势等作一个大概的研究.而这个研究要借助于函数性质.方程.不等式等理论和手段.是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换.以及确定怎样的变换.这也是个难点.1.作函数图象的一个基本方法 查看更多

 

题目列表(包括答案和解析)

假设一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图,则这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录:

年龄/周岁

3

4

5

6

7

8

9

身高/cm

90.8

97.6

104.2

110.9

115.6

122.0

128.5

年龄/周岁

10

11

12

13

14

15

16

身高/cm

134.2

140.8

147.6

154.2

160.9

167.6

173.0

(1)作出这些数据的散点图;

(2)求出这些数据的回归方程;

(3)对于这个例子,你如何解释回归系数的含义?

(4)用下一年的身高减去当年的身高,计算他每年身高的增长数,并计算他从3~16岁身高的年均增长数.

(5)解释一下回归系数与每年平均增长的身高之间的联系.

查看答案和解析>>

关于简单随机抽样、系统抽样、分层抽样之间的联系,下面有四种说法:(1)都是从总体中逐个抽取;(2)都是将整体分成几部分,按事先规定的原则在各部分抽取;(3)抽样过程中每个个体被抽取的概率相同;(4)将整体分成几层,然后分层进行抽取.以上说法正确的个数是

A.1                          B.2                          C.3                          D.4

查看答案和解析>>

通过点的运动及线的运动变化,讨论相交弦定理、切割线定理及其推论和切线长定理之间的联系.

查看答案和解析>>

想象一下一个人从出生到死亡,在每个生日都测量身高,并作出这些数据散点图.这些点将不会落在一条直线上,但在一段时间内的增长数据有时可以用线性回归来分析.下表是一位母亲给儿子作的成长记录.

年龄/周岁

3

4

5

6

7

8

9

10

11

12

13

14

15

16

身高/cm

90.8

97.6

104.2

110.9

115.6

122.0

128.5

134.2

140.8

147.6

154.2

160.9

167.6

173.0

(1)作出这些数据的散点图.

(2)求出这些数据的回归方程.

(3)对于这个例子,你如何解释回归系数的含义?

(4)用下一年的身高减去当年的身高,计算他每年身高的增长数,并计算他从3—16岁身高的年均增长数.

(5)解释一下回归系数与每年平均增长的身高之间的联系.

查看答案和解析>>

(2012•泉州模拟)数学与文学之间存在着许多奇妙的联系.诗中有回文诗,如:“云边月影沙边雁,水外天光山外树”,倒过来读,便是“树外山光天外水,雁边沙影月边云”,其意境和韵味读来真是一种享受!数学中也有回文数,如:88,454,7337,43534等都是回文数,无论从左往右读,还是从右往左读,都是同一个数,称这样的数为“回文数”,读起来还真有趣!
二位的回文数有11,22,33,44,55,66,77,88,99,共9个;
三位的回文数有101,111,121,131,…,969,979,989,999,共90个;
四位的回文数有1001,1111,1221,…,9669,9779,9889,9999,共90个;
由此推测:10位的回文数总共有
90000
90000
个.

查看答案和解析>>

1.不改变f(x)值域,即不能缩小原函数定义域。选项B,C,D均缩小了的定义域,故选A。

2.先作出f(x,y)=0关于轴对称的函数的图象,即为函数f(-x,y)=0的图象,又

f(2-x,y)=0即为,即由f(-x,y)=0向右平移2个单位。故选C。

3.命题p为真时,即真数部分能够取到大于零的所有实数,故二次函数的判别式,从而;命题q为真时,。

    若p或q为真命题,p且q为假命题,故p和q中只有一个是真命题,一个是假命题。

    若p为真,q为假时,无解;若p为假,q为真时,结果为1<a<2,故选C.

4.图像法解方程,也可代入各区间的一个数(特值法或代入法),选C;

5.函数f(x)的对称轴为2,结合其单调性,选A;

6.从反面考虑,注意应用特例,选B;

7.设tan=x (x>0),则+=,解出x=2,再用万能公式,选A;

8.利用是关于n的一次函数,设S=S=m,=x,则(,p)、(,q)、

(x,p+q)在同一直线上,由两点斜率相等解得x=0,则答案:0;

9.设cosx=t,t∈[-1,1],则a=t-t-1∈[-,1],所以答案:[-,1];

10.设高h,由体积解出h=2,答案:24;

11.设长x,则宽,造价y=4×120+4x×80+×80≥1760,答案:1760。

12.运用条件知:=2,且

==16

13.依题意可知,从而可知,所以有

,又为正整数,取,则

,所以,从而,所以,又,所以,因此有最小值为。

下面可证时,,从而,所以, 又,所以,所以,综上可得:的最小值为11。

14.分析:这是有关函数定义域、值域的问题,题目是逆向给出的,解好本题要运用复合函数,把f(x)分解为u=ax+2x+1和y=lgu 并结合其图象性质求解.

切实数x恒成立.   a=0或a<0不合题意,

解得a>1.

当a<0时不合题意;    a=0时,u=2x+1,u能取遍一切正实数;

a>0时,其判别式Δ=22-4×a×1≥0,解得0<a≤1.

所以当0≤a≤1时f(x)的值域是R

 

15.分析:此问题由于常见的思维定势,易把它看成关于x的不等式讨论。然而,若变换一个角度以m为变量,即关于m的一次不等式(x-1)m-(2x-1)<0在[-2,2]上恒成立的问题。对此的研究,设f(m)=(x-1)m-(2x-1),则问题转化为求一次函数(或常数函数)f(m)的值在[-2,2]内恒为负值时参数x应该满足的条件。

解:问题可变成关于m的一次不等式:(x-1)m-(2x-1)<0在[-2,2] 恒成立,设f(m)=(x-1)m-(2x-1),  则

解得x∈(,)

说明 本题的关键是变换角度,以参数m作为自变量而构造函数式,不等式问题变成函数在闭区间上的值域问题。本题有别于关于x的不等式2x-1>m(x-1)的解集是[-2,2]时求m的值、关于x的不等式2x-1>m(x-1)在[-2,2]上恒成立时求m的范围。

一般地,在一个含有多个变量的数学问题中,确定合适的变量和参数,从而揭示函数关系,使问题更明朗化。或者含有参数的函数中,将函数自变量作为参数,而参数作为函数,更具有灵活性,从而巧妙地解决有关问题。

 

16.分析: ①问利用公式a与S建立不等式,容易求解d的范围;②问利用S是n的二次函数,将S中哪一个值最大,变成求二次函数中n为何值时S取最大值的函数最值问题。

解:① 由a=a+2d=12,得到a=12-2d,所以

S=12a+66d=12(12-2d)+66d=144+42d>0,

S=13a+78d=13(12-2d)+78d=156+52d<0。

 解得:-<d<-3。

② S=na+n(n1-1)d=n(12-2d)+n(n-1)d

=[n-(5-)]-[(5-)]

因为d<0,故[n-(5-)]最小时,S最大。由-<d<-3得6<(5-)<6.5,故正整数n=6时[n-(5-)]最小,所以S最大。

说明: 数列的通项公式及前n项和公式实质上是定义在自然数集上的函数,因此可利用函数思想来分析或用函数方法来解决数列问题。也可以利用方程的思想,设出未知的量,建立等式关系即方程,将问题进行算式化,从而简洁明快。由次可见,利用函数与方程的思想来解决问题,要求灵活地运用、巧妙的结合,发展了学生思维品质的深刻性、独创性。

本题的另一种思路是寻求a>0、a<0 ,即:由d<0知道a>a>…>a,由S=13a<0得a<0,由S=6(a+a)>0得a>0。所以,在S、S、…、S中,S的值最大。

 

17.分析:异面直线PB和AC的距离可看成求直线PB上任意一点到AC的距离的最小值,从而设定变量,建立目标函数而求函数最小值。

  P

         M
A        H       B
     D     C

解:在PB上任取一点M,作MD⊥AC于D,MH⊥AB于H,

设MH=x,则MH⊥平面ABC,AC⊥HD 。

∴MD=x+[(2r-x)sinθ]=(sin+1)x-4rsinθx+4rsinθ=(sinθ+1)[x-]+

即当x=时,MD取最小值为两异面直线的距离。

说明:本题巧在将立体几何中“异面直线的距离”变成“求异面直线上两点之间距离的最小值”,并设立合适的变量将问题变成代数中的“函数问题”。一般地,对于求最大值、最小值的实际问题,先将文字说明转化成数学语言后,再建立数学模型和函数关系式,然后利用函数性质、重要不等式和有关知识进行解答。比如再现性题组第8题就是典型的例子。

 

18.分析:已知了一个积式,考虑能否由其它已知得到一个和式,再用方程思想求解。

解: 由A、B、C成等差数列,可得B=60°;

由△ABC中tanA+tanB+tanC=tanA?tanB?tanC,得

tanA+tanC=tanB(tanA?tanC-1)= (1+)

设tanA、tanC是方程x-(+3)x+2+=0的两根,解得x=1,x=2+

设A<C,则tanA=1,tanC=2+,   ∴A=,C=

由此容易得到a=8,b=4,c=4+4。

说明:本题的解答关键是利用“△ABC中tanA+tanB+tanC=tanA?tanB?tanC”这一条性质得到tanA+tanC,从而设立方程求出tanA和tanC的值,使问题得到解决。

19.分析:当x∈(-∞,1]时f(x)=lg有意义的函数问题,转化为1+2+4a>0在x∈(-∞,1]上恒成立的不等式问题。

解:由题设可知,不等式1+2+4a>0在x∈(-∞,1]上恒成立,

即:()+()+a>0在x∈(-∞,1]上恒成立。

设t=(),  则t≥,   又设g(t)=t+t+a,其对称轴为t=-

∴ t+t+a=0在[,+∞)上无实根,  即 g()=()++a>0,得a>-

所以a的取值范围是a>-。

说明:对于不等式恒成立,引入新的参数化简了不等式后,构造二次函数利用函数的图像和单调性进行解决问题,其中也联系到了方程无解,体现了方程思想和函数思想。一般地,我们在解题中要抓住二次函数及图像、二次不等式、二次方程三者之间的紧密联系,将问题进行相互转化。

在解决不等式()+()+a>0在x∈(-∞,1]上恒成立的问题时,也可使用“分离参数法”: 设t=(),  t≥,则有a=-t-t∈(-∞,-],所以a的取值范围是a>-。其中最后得到a的范围,是利用了二次函数在某区间上值域的研究,也可属应用“函数思想”。

 

20.解:f(x)=cosqsinx-(sinxcosq-cosxsinq)+(tanq-2)sinx-sinq

       =sinqcosx+(tanq-2)sinx-sinq

因为f(x)是偶函数,

所以对任意xÎR,都有f(-x)=f(x),

即sinqcos(-x)+(tanq-2)sin(-x)-sinq=sinqcosx+(tanq-2)sinx-sinq,

即(tanq-2)sinx=0,

所以tanq=2

解得或

此时,f(x)=sinq(cosx-1).

当sinq=时,f(x)=(cosx-1)最大值为0,不合题意最小值为0,舍去;

当sinq=时,f(x)=(cosx-1)最小值为0,

当cosx=-1时,f(x)有最大值为,

自变量x的集合为{x|x=2kp+p,kÎZ}.

 

21.解:(1);.,
若上是增函数,则恒成立,即
若上是减函数,则恒成立,这样的不存在.
综上可得:.

(2)(证法一)设,由得,于是有,(1)-(2)得:,化简可得
,,,故,即有.

(证法二)假设,不妨设,由(1)可知在

上单调递增,故,

这与已知矛盾,故原假设不成立,即有.

 


同步练习册答案