所以最大值为.最小值为.--------------------------------10分 查看更多

 

题目列表(包括答案和解析)

(本小题满分10分)

在某学校组织的一次蓝球定点投蓝训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次。某同学在A处的命中率为0.25,在B处的命中率为.该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为     

0

2

3

4

5

0.03

的值;

求随机变量的数学期量

试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。

 

 

 

查看答案和解析>>

设函数

(I)求的单调区间;

(II)当0<a<2时,求函数在区间上的最小值.

【解析】第一问定义域为真数大于零,得到.                            

,则,所以,得到结论。

第二问中, ().

.                          

因为0<a<2,所以.令 可得

对参数讨论的得到最值。

所以函数上为减函数,在上为增函数.

(I)定义域为.           ………………………1分

.                            

,则,所以.  ……………………3分          

因为定义域为,所以.                            

,则,所以

因为定义域为,所以.          ………………………5分

所以函数的单调递增区间为

单调递减区间为.                         ………………………7分

(II) ().

.                          

因为0<a<2,所以.令 可得.…………9分

所以函数上为减函数,在上为增函数.

①当,即时,            

在区间上,上为减函数,在上为增函数.

所以.         ………………………10分  

②当,即时,在区间上为减函数.

所以.               

综上所述,当时,

时,

 

查看答案和解析>>

(本小题满分14分)

为积极响应国家“家电下乡”政策的号召,某厂家把总价值为10万元的A、B两种型号的电视机投放市场,并且全部被农民购买。若投放的A、B两种型号的电视机价值都不低于1万元,农民购买A、B两种型号的电视机将按电视机价值的一定比例给予补贴,补贴方案如下表所示,设投放市场的A、B型号电视机的价值分别为万元,万元,农民得到的补贴为万元,解答以下问题.

 

A型号

B型号

电视机价值(万元)

农民获得补贴(万元)

 

(1) 用的代数式表示

(2) 当取何值时, 取最大值并求出其最大值(精确到0.1,参考数据:

 

 

 

 

 

查看答案和解析>>

(本小题满分14分)
为积极响应国家“家电下乡”政策的号召,某厂家把总价值为10万元的A、B两种型号的电视机投放市场,并且全部被农民购买。若投放的A、B两种型号的电视机价值都不低于1万元,农民购买A、B两种型号的电视机将按电视机价值的一定比例给予补贴,补贴方案如下表所示,设投放市场的A、B型号电视机的价值分别为万元,万元,农民得到的补贴为万元,解答以下问题.

 
 
A型号
 
B型号
 
电视机价值(万元)
 

 

 
农民获得补贴(万元)
 

 

 
 
(1) 用的代数式表示
(2) 当取何值时, 取最大值并求出其最大值(精确到0.1,参考数据:

查看答案和解析>>

(本小题满分14分)
为积极响应国家“家电下乡”政策的号召,某厂家把总价值为10万元的A、B两种型号的电视机投放市场,并且全部被农民购买。若投放的A、B两种型号的电视机价值都不低于1万元,农民购买A、B两种型号的电视机将按电视机价值的一定比例给予补贴,补贴方案如下表所示,设投放市场的A、B型号电视机的价值分别为万元,万元,农民得到的补贴为万元,解答以下问题.
 
A型号
B型号
电视机价值(万元)


农民获得补贴(万元)


 
(1) 用的代数式表示
(2) 当取何值时, 取最大值并求出其最大值(精确到0.1,参考数据:

查看答案和解析>>


同步练习册答案