题目列表(包括答案和解析)
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
(本小题满分14分) 设
是定义在区间
上的偶函数,命题
:
在
上单调递减;命题
:
,若“
或
”为假,求实数
的取值范围。
(07年安徽卷文)(本小题满分14分)设F是抛物线G:x2=4y的焦点.
(Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程:
(Ⅱ)设A、B为势物线G上异于原点的两点,且满足
,延长AF、BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.
(本小题满分14分)关于
的方程![]()
(1)若方程C表示圆,求实数m的取值范围;
(2)在方程C表示圆时,若该圆与直线![]()
且
,求实数m的值;
(3)在(2)的条件下,若定点A的坐标为(1,0),点P是线段MN上的动点,
求直线AP的斜率的取值范围。
一、选择题
1. C 2. A 3. C 4. D 5.D 6. B 7. C 8. B
二、填空题
9.
,
10.
11.
12.
13. ①③ 14.(1,2)
三、解答题
15. 解:
1分
2分
???3分
(Ⅰ)
的最小正周期为
; ???6分
(Ⅱ)由
,
7分
得
,
8分
的单调增区间为
???9分
(Ⅲ)因为
,即
10分
11分
???12分
16.解:(Ⅰ)∵
∴当
时,则
得
1分
解得
???3分
当
时,则由
4分
解得
??6分
(Ⅱ) 当
时,
???7分
???8分
,
中各项不为零
???9分
???10分
是以
为首项,
为公比的数列
???11分
???12分
17.
(Ⅰ) 证明:∵
,
∴ 令
,得
???1分
∴
???2分
令
,得
???3分
即
∴函数
为奇函数
???4分
(Ⅱ) 证明:设
,且
???5分
则
???6分
又∵当
时
∴
???7分
即
???8分
∴函数
在
上是增函数
???9分
(Ⅲ) ∵函数
在
上是增函数
∴函数
在区间[-4,4]上也是增函数
???10分
∴函数
的最大值为
,最小值为
???11分
∵
∴
???12分
∵函数
为奇函数
∴
???13分
故,函数
的最大值为12,最小值为
.
???14分
18. 解:设甲现在所在位置为A,乙现在所在位置为B,运动t秒后分别到达位置C、D,如图可知CD即为甲乙的距离.
??1分

当
时,
??2分
??3分

??5分
时,
??7分

当
时,C、B重合,
??9分
当
时,
??10分
??12分
??13分
综上所述:经过2秒后两人距离最近为
. ??14分
19. 解证:(I)易得
???1分
的两个极值点
的两个实根,又
???3分
∴
???5分
∵
???6分
???8分
(Ⅱ)设
则
???10分
由
???11分
上单调递减
???12分
???13分
∴
的最大值是
???14分
20.解:(Ⅰ)当
时,
,
,???1分
数列
为等比数列,
,故
???2分
???3分
(Ⅱ)设数列
公差
,
根据题意有:
,
???4分
即:
,
,代入上式有: ???5分
,
???7分
即关于
不等式
有解
???8分
当
时,
???9分
???10分
(Ⅲ)
,记
前n项和为
???11分
???12分
???13分
???14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com