(3)是否存在椭圆E.使得直线MN的斜率k在区间(-)内取值?若存在.求出椭圆E的离心率e的取值范围,若不存在.请说明理由. 参 考 答 案第Ⅰ卷 题目123456789101112答案CCDBDBCDABCD 查看更多

 

题目列表(包括答案和解析)

如图,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:=1(a>b>0)的左、右焦点,A,B分别是椭圆E的左、右顶点,且+5=0.
 
(1)求椭圆E的离心率; (2)已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连结MF1并延长交椭圆E于点N,连结MD、ND并分别延长交椭圆E于点P、Q,连结PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

如图,在平面直角坐标系xOy中,已知F1,F2分别是椭圆E:=1(a>b>0)的左、右焦点,A,B分别是椭圆E的左、右顶点,且+5=0.
 
(1)求椭圆E的离心率; (2)已知点D(1,0)为线段OF2的中点,M为椭圆E上的动点(异于点A、B),连结MF1并延长交椭圆E于点N,连结MD、ND并分别延长交椭圆E于点P、Q,连结PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

已知椭圆的左焦点为F(-,0),离心率e=,M、N是椭圆上的动点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为-,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.
(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.

查看答案和解析>>

已知椭圆的左焦点为F(-,0),离心率e=,M、N是椭圆上的动点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为-,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.
(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA 并延长交椭圆于点B,证明:MN⊥MB.

查看答案和解析>>

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F(-
2
,0)
,离心率e=
2
2
,M,N是椭圆上的动点.
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:
OP
=
OM
+2
ON
,直线OM与ON的斜率之积为-
1
2
,问:是否存在定点F1,F2,使得|PF1|+|PF2|为定值?,若存在,求出F1,F2的坐标,若不存在,说明理由.
(Ⅲ)若M在第一象限,且点M,N关于原点对称,点M在x轴上的射影为A,连接NA并延长交椭圆于点B,设直线MN、MB的斜率分别为kMN、kMB,求kMN•kMB的值.

查看答案和解析>>


同步练习册答案