ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ×ó½¹µãΪF(-
2
£¬0)
£¬ÀëÐÄÂÊe=
2
2
£¬M£¬NÊÇÍÖÔ²ÉϵĶ¯µã£®
£¨¢ñ£©ÇóÍÖÔ²±ê×¼·½³Ì£»
£¨¢ò£©É趯µãPÂú×㣺
OP
=
OM
+2
ON
£¬Ö±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
1
2
£¬ÎÊ£ºÊÇ·ñ´æÔÚ¶¨µãF1£¬F2£¬Ê¹µÃ|PF1|+|PF2|Ϊ¶¨Öµ£¿£¬Èô´æÔÚ£¬Çó³öF1£¬F2µÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨¢ó£©ÈôMÔÚµÚÒ»ÏóÏÞ£¬ÇÒµãM£¬N¹ØÓÚÔ­µã¶Ô³Æ£¬µãMÔÚxÖáÉϵÄÉäӰΪA£¬Á¬½ÓNA²¢ÑÓ³¤½»ÍÖÔ²ÓÚµãB£¬ÉèÖ±ÏßMN¡¢MBµÄбÂÊ·Ö±ðΪkMN¡¢kMB£¬ÇókMN•kMBµÄÖµ£®
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÍÖÔ²
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ×ó½¹µãΪF(-
2
£¬0)
£¬ÀëÐÄÂÊe=
2
2
£¬¿ÉµÃc=
2
£¬a=2
£¬ÀûÓÃb=
a2-c2
=
2
£¬¿ÉÇóµÃÍÖÔ²±ê×¼·½³Ì£»
£¨¢ò£©½«
OP
=
OM
+2
ON
×ø±ê»¯£¬ÀûÓÃÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
1
2
£¬¿É¼ÆËãx2+2y2=20£¬´Ó¶ø¿ÉÖª´æÔÚ¶¨µãF1(-
10
£¬0)
£¬F2(
10
£¬0)
£¬Ê¹µÃ|PF1|+|PF2|Ϊ¶¨Öµ£®
£¨¢ó£©ÉèMµã×ø±êΪ£¨x0£¬y0£©£¬ÔòNµã×ø±êΪ£¨-x0£¬-y0£©£¬A×ø±êΪ£¨x0£¬0£©£¬£¬Ð´³öÖ±ÏßNA·½³ÌΪºÍÍÖÔ²ÁªÁ¢£¬¿ÉÇóµÃBµÄ×ø±ê£¨x£¬y£©£¬½ø¶ø¿É¼ÆËãkMB£¬kMN£¬¼´¿ÉÇóµÃkMN•kMBµÄÖµ£®
½â´ð£º½â£º£¨¢ñ£©¡ßÍÖÔ²
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ×ó½¹µãΪF(-
2
£¬0)
£¬ÀëÐÄÂÊe=
2
2
£¬
¡àc=
2
£¬a=2

¡àb=
a2-c2
=
2

¡àÍÖÔ²±ê×¼·½³ÌΪ
x2
4
+
y2
2
=1
£»
£¨¢ò£©ÉèP£¨x£¬y£©£¬M£¨x1£¬y1 £©¡¢N£¨x2£¬y2 £©£®
¡ß
OP
=
OM
+2
ON
£¬
¡à£¨x£¬y£©=£¨x1+2x2£¬y1+2y2£©£¬¡àx=x1+2x2£¬y=y1+2y2£¬
¡ßM¡¢NÊÇÍÖÔ²Éϵĵ㣬¡à
x12
4
+
y12
2
=1
£¬
x22
4
+
y22
2
=1
£®
¡àx2+2y2=£¨x1+2x2£©2+2 £¨y1+2y2£©2=£¨x12+2y12 £©+4£¨x22+2y22 £©+4£¨x1x2+2y1y2£©=20+4£¨x1x2+2y1y2£©£®
¡ßÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ-
1
2
£¬
¡à
y1y2
x1x2
=-
1
2

¡àx1x2+2y1y2=0£¬
¡àx2+2y2=20£¬¼´
x2
20
+
y2
10
=1

¡à´æÔÚ¶¨µãF1(-
10
£¬0)
£¬F2(
10
£¬0)
£¬Ê¹µÃ|PF1|+|PF2|Ϊ¶¨Öµ£®
£¨¢ó£©ÉèMµã×ø±êΪ£¨x0£¬y0£©£¬ÔòNµã×ø±êΪ£¨-x0£¬-y0£©£¬A×ø±êΪ£¨x0£¬0£©£¬
Ö±ÏßNA·½³ÌΪy=
y0
2x0
(x-x0)
ºÍÍÖÔ²ÁªÁ¢
y=
y0
2x0
(x-x0)
x2
4
+
y2
2
=1
£¬ÏûÈ¥yÕûÀíµÃ
(1+
y02
2x02
)x2
-
y02
x0
x
-4+
y02
2
=0
ÉèB£¨x£¬y£©£¬Ôò-x0+x=
2x0y02
2x02+ y02
£¬¡ày-y0=
-2y0x02
2x02+y02

¡à
y-y0
x-x0
=-
x0
y0
£¬¡àkMB=-
x0
y0

¡ßkMN=
y0
x0
£¬
¡àkMN•kMB=-1£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²é´æÔÚÐÔÎÊÌâµÄ̽Ç󣬿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬¿¼²éѧÉúÔËËã¡¢·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬×ÛºÏÐÔÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬×󶥵ãΪA£¬Èô|F1F2|=2£¬ÍÖÔ²µÄÀëÐÄÂÊΪe=
1
2

£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£¬
£¨¢ò£©ÈôPÊÇÍÖÔ²ÉϵÄÈÎÒâÒ»µã£¬Çó
PF1
PA
µÄÈ¡Öµ·¶Î§
£¨III£©Ö±Ïßl£ºy=kx+mÓëÍÖÔ²ÏཻÓÚ²»Í¬µÄÁ½µãM£¬N£¨¾ù²»Êdz¤ÖáµÄ¶¥µã£©£¬AH¡ÍMN´¹×ãΪHÇÒ
AH
2
=
MH
HN
£¬ÇóÖ¤£ºÖ±Ïßlºã¹ý¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó½¹µãF£¨-c£¬0£©Êdz¤ÖáµÄÒ»¸öËĵȷֵ㣬µãA¡¢B·Ö±ðΪÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬¹ýµãFÇÒ²»ÓëyÖá´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²ÓÚC¡¢DÁ½µã£¬¼ÇÖ±ÏßAD¡¢BCµÄбÂÊ·Ö±ðΪk1£¬k2
£¨1£©µ±µãDµ½Á½½¹µãµÄ¾àÀëÖ®ºÍΪ4£¬Ö±Ïßl¡ÍxÖáʱ£¬Çók1£ºk2µÄÖµ£»
£¨2£©Çók1£ºk2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊÊÇ
3
2
£¬ÇÒ¾­¹ýµãM£¨2£¬1£©£¬Ö±Ïßy=
1
2
x+m(m£¼0)
ÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©µ±m=-1ʱ£¬Çó¡÷MABµÄÃæ»ý£»
£¨3£©Çó¡÷MABµÄÄÚÐĵĺá×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Íþº£¶þÄ££©ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪe=
6
3
£¬¹ýÓÒ½¹µã×ö´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëÍÖÔ²ÏཻÓÚÁ½µã£¬ÇÒÁ½½»µãÓëÍÖÔ²µÄ×󽹵㼰ÓÒ¶¥µã¹¹³ÉµÄËıßÐÎÃæ»ýΪ
2
6
3
+2
£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèµãM£¨0£¬2£©£¬Ö±Ïßl£ºy=1£¬¹ýMÈÎ×÷Ò»Ìõ²»ÓëyÖáÖغϵÄÖ±ÏßÓëÍÖÔ²ÏཻÓÚA¡¢BÁ½µã£¬ÈôNΪABµÄÖе㣬DΪNÔÚÖ±ÏßlÉϵÄÉäÓ°£¬ABµÄÖд¹ÏßÓëyÖá½»ÓÚµãP£®ÇóÖ¤£º
ND
MP
AB
2
Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÓÒ½¹µãΪF£¬¹ýF×÷yÖáµÄƽÐÐÏß½»ÍÖÔ²ÓÚM¡¢NÁ½µã£¬Èô|MN|=3£¬ÇÒÍÖÔ²ÀëÐÄÂÊÊÇ·½³Ì2x2-5x+2=0µÄ¸ù£¬ÇóÍÖÔ²·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸