题目列表(包括答案和解析)
已知数列
的前
项和为
,且
(
N*),其中
.
(Ⅰ) 求
的通项公式;
(Ⅱ) 设
(
N*).
①证明:
;
② 求证:
.
【解析】本试题主要考查了数列的通项公式的求解和运用。运用
关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到
,②由于
,
所以
利用放缩法,从此得到结论。
解:(Ⅰ)当
时,由
得
. ……2分
若存在
由
得
,
从而有
,与
矛盾,所以
.
从而由
得
得
. ……6分
(Ⅱ)①证明:![]()
证法一:∵
∴![]()
∴
∴
.…………10分
证法二:
,下同证法一.
……10分
证法三:(利用对偶式)设
,
,
则
.又
,也即
,所以
,也即
,又因为
,所以
.即
………10分
证法四:(数学归纳法)①当
时,
,命题成立;
②假设
时,命题成立,即
,
则当
时,![]()
![]()
即![]()
即![]()
故当
时,命题成立.
综上可知,对一切非零自然数
,不等式②成立. ………………10分
②由于
,
所以
,
从而
.
也即![]()
已知向量
(
),向量
,
,
且![]()
![]()
.
(Ⅰ)求向量
;
(Ⅱ)若
,
,求
.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵
,∴
,…………………1分
∵
,得到三角关系是
,结合
,解得。
(2)由
,解得
,
,结合二倍角公式
,和
,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵
,∴
,…………1分
∵
,∴
,即
① …………2分
又
② 由①②联立方程解得,
,
5分
∴
……………6分
(Ⅱ)∵
即
,
, …………7分
∴
,
………8分
又∵
, ………9分
, ……10分
∴
.
解法二: (Ⅰ)
,…………………………………1分
又
,∴
,即
,①……2分
又
②
将①代入②中,可得
③ …………………4分
将③代入①中,得
……………………………………5分
∴
…………………………………6分
(Ⅱ) 方法一
∵
,
,∴
,且
……7分
∴
,从而
. …………………8分
由(Ⅰ)知
,
; ………………9分
∴
. ………………………………10分
又∵
,∴
,
又
,∴
……11分
综上可得
………………………………12分
方法二∵
,
,∴
,且
…………7分
∴
.
……………8分
由(Ⅰ)知
,
.
…………9分
∴
……………10分
∵
,且注意到
,
∴
,又
,∴
………………………11分
综上可得
…………………12分
(若用
,又∵
∴
,
已知函数![]()
(1)若函数
的图象经过P(3,4)点,求a的值;
(2)比较
大小,并写出比较过程;
(3)若
,求a的值.
【解析】本试题主要考查了指数函数的性质的运用。第一问中,因为函数
的图象经过P(3,4)点,所以
,解得
,因为
,所以
.
(2)问中,对底数a进行分类讨论,利用单调性求解得到。
(3)中,由
知,
.,指对数互化得到
,,所以
,解得所以,
或
.
解:⑴∵函数
的图象经过
∴
,即
. … 2分
又
,所以
.
………… 4分
⑵当
时,
;
当
时,
. ……………… 6分
因为,
,![]()
当
时,
在
上为增函数,∵
,∴
.
即
.当
时,
在
上为减函数,
∵
,∴
.即
. …………………… 8分
⑶由
知,
.所以,
(或
).
∴
.∴
, … 10分
∴
或
,所以,
或
.
函数
是定义在
上的奇函数,且
。
(1)求实数a,b,并确定函数
的解析式;
(2)判断
在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出
的单调减区间,并判断
有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
【解析】本试题主要考查了函数的解析式和奇偶性和单调性的综合运用。第一问中,利用函数
是定义在
上的奇函数,且
。
解得
,![]()
(2)中,利用单调性的定义,作差变形判定可得单调递增函数。
(3)中,由2知,单调减区间为
,并由此得到当,x=-1时,
,当x=1时,![]()
解:(1)
是奇函数,
。
即
,
,
………………2分
,又
,
,
,![]()
(2)任取
,且
,
,………………6分
,![]()
,
,
,
,
在(-1,1)上是增函数。…………………………………………8分
(3)单调减区间为
…………………………………………10分
当,x=-1时,
,当x=1时,
。
已知函数 ![]()
R).
(Ⅰ)若
,求曲线
在点
处的的切线方程;
(Ⅱ)若
对任意 ![]()
恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当
时,
.
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:![]()
第二问中,由题意得,
即
即可。
Ⅰ)当
时,
.
,
因为切点为(
),
则
,
所以在点(
)处的曲线的切线方程为:
. ……5分
(Ⅱ)解法一:由题意得,
即
. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为
,所以
恒成立,
故
在
上单调递增,
……12分
要使
恒成立,则
,解得
.……15分
解法二:
……7分
(1)当
时,
在
上恒成立,
故
在
上单调递增,
即
.
……10分
(2)当
时,令
,对称轴
,
则
在
上单调递增,又
① 当
,即
时,
在
上恒成立,
所以
在
单调递增,
即
,不合题意,舍去
②当
时,
,
不合题意,舍去 14分
综上所述:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com