精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,直线y=kx+1分别交x轴、y 轴于点A、B,过点B作BC⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交轴于点x E,过点E作EF⊥DE交y轴于点F。已知点A恰好是线段EC的中点,那么线段EF的长是


A.
B.
C.
D.4
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.精英家教网
实验与探究:
(1)由图观察易知A(0,2)关于直线l的对称点A′(2,0)的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′
 
、C′
 

归纳与发现:
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为
 
(不必证明);
运用与拓广:
(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例精英家教网函数y=
mx
在第一象限的图象交于点c(1,6)、点D(3,n).过点C作CE上y轴于E,过点D作DF上x轴于F.
(1)求m,n的值;
(2)求直线AB的函数解析式;
(3)求证:△AEC≌△DFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,直线l经过点A(2,-3),与x轴交于点B,且与直线y=3x-
8
3
平行.
(1)求:直线l的函数解析式及点B的坐标;
(2)如直线l上有一点M(a,-6),过点M作x轴的垂线,交直线y=3x-
8
3
于点N,在线段MN上求一点P,使△PAB是直角三角形,请求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,直线y=kx+1分别交x轴,y轴于点A,B,过点B作BC⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交轴于点x E,过点E作EF⊥DE交y轴于点F.已知点A恰好是线段EC的中点,那么线段EF的长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,直线y=
34
x-3与x轴、y轴分别交于A,B两点.现有半径为1的动圆位于原点处,以每秒1个单位的速度向右作平移运动,则经过
 
秒,动圆与直线AB相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,直线y=-
3
x-
3
与x轴交于点A,与y轴交于点C,抛物线y=ax2-
2
3
3
x+c(a≠0)经过A,B,C三点.
(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;
(2)在抛物线上是否存在点P,使△ABP为直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由;
(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点精英家教网P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=
12
x
+2与x轴、y轴分别交于A、B两点,以AB为边精英家教网在第二象限内作正方形ABCD,过点D作DE⊥x轴,垂足为E.
(1)求点A、B的坐标,并求边AB的长;
(2)求点D的坐标;
(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=
1
2
x+
5
与x轴、y轴分别交于A、B两点,将△ABO绕原点O顺时针旋转得到△A′B′O,并使OA′⊥AB,垂足为D,直线AB与线段A?B?相交于点G.动点E从原点O出发,以1个单位/秒的速度沿x轴正方向运动,设动点E运动的时间为t秒.
(1)求点D的坐标;
(2)连接DE,当DE与线段OB′相交,交点为F,且四边形DFB′G是平行四边形时,(如图2)求此时线段DE所在的直线的解析式;
(3)若以动点为E圆心,以2
5
为半径作⊙E,连接A′E,t为何值时,Tan∠EA′B′=
1
8
?并判断此时直线A′O与⊙E的位置关系,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,直线y=kx+b经过点(1,5)和点(-2,8).
(1)求这条直线的解析式;
(2)点P(x,y)是这条直线上的一点,点A(5,0),O是坐标原点,设△PAO的面积为S,若S=10,求tan∠POA的值.

查看答案和解析>>


同步练习册答案