精英家教网 > 初中数学 > 题目详情
精英家教网如图,在平面直角坐标系中,直线y=-
3
x-
3
与x轴交于点A,与y轴交于点C,抛物线y=ax2-
2
3
3
x+c(a≠0)经过A,B,C三点.
(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;
(2)在抛物线上是否存在点P,使△ABP为直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由;
(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由.
分析:(1)抛物线解析式中有两个待定系数a,c,根据直线AC解析式求点A、C坐标,代入抛物线解析式即可;
(2)分析不难发现,△ABP的直角顶点只可能是P,根据已知条件可证AC2+BC2=AB2,故点C满足题意,根据抛物线的对称性,点C关于抛物线对称轴的对称点也符合题意;
(3)由于B,F是定点,BF的长一定,实际上就是求BM+FM最小,找出点B关于直线AC的对称点B',连接B'F,交AC于点M,点M即为所求,由(2)可知,BC⊥AC,延长BC到B',使BC=B'C,利用中位线的性质可得B'的坐标,从而可求直线B'F的解析式,再与直线AC的解析式联立,可求M点坐标.
解答:精英家教网解:(1)∵直线y=-
3
x-
3
与x轴交于点A,与y轴交于点C
∴点A(-1,0),C(0,-
3

∵点A,C都在抛物线上,
0=a+
2
3
3
+c
-
3
=c

a=
3
3
c=-
3

∴抛物线的解析式为y=
3
3
x2-
2
3
3
x-
3

∴顶点F(1,-
4
3
3
).

(2)存在:
p1(0,-
3
),p2(2,-
3
).

(3)存在
理由:
解法一:
延长BC到点B′,使B′C=BC,连接B′F交直线AC于点M,则点M就是所求的点,
∵过点B′作B′H⊥AB于点H,
∵B点在抛物线y=
3
3
x2-
2
3
3
x-
3
上,
∴B(3,0),
在Rt△BOC中,tan∠OBC=
3
3

∴∠OBC=30°,BC=2
3

在Rt△B′BH中,B′H=
1
2
BB′=2
3

BH=
3
B′H=6,∴OH=3,
∴B′(-3,-2
3
).
设直线B′F的解析式为y=kx+b,
-2
3
=-3k+b
-
4
3
3
=k+b

解得
k=
3
6
b=-
3
3
2

∴y=
3
6
x-
3
3
2

y=-
3
x-
3
y=
3
6
x-
3
3
2

解得
x=
3
7
y=-
10
3
7

∴M(
3
7
,-
10
3
7

∴在直线AC上存在点M,使得△MBF的周长最小,此时M(
3
7
,-
10
3
7
).
解法二:
过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点,连接BH交AC于点M,则点M
即为所求.
过点F作FG⊥y轴于点G,则OB∥FG,BC∥FH,
∴∠BOC=∠FGH=90°,∠BCO=∠FHG
∴∠HFG=∠CBO
同方法一可求得B(3,0)
在Rt△BOC中,tan∠OBC=
3
3
精英家教网
∴∠OBC=30°,可求得GH=GC=
3
3

∴GF为线段CH的垂直平分线,可证得△CFH为等边三角形
∴AC垂直平分FH
即点H为点F关于AC对称点,
∴H(0,-
-5
3
3

设直线BH的解析式为y=kx+b,由题意得,
0=3k+b
b=-
5
3
3

解得
k=
5
3
9
b=-
5
3
3

∴y=
5
9
3
x-
5
3
3

y=
5
9
3
x-
5
3
3
y=-
3
x-
3

解得
x=
3
7
y=-
10
3
7

∴M(
3
7
,-
10
3
7
),
∴在直线AC上存在点M,使得△MBF的周长最小,此时M(
3
7
,-
10
3
7
).
点评:考查代数几何的综合运用能力,体现数学知识的内在联系和不可分割的特点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案