精英家教网 > 初中数学 > 题目详情
如图,已知在数轴上A、B、C、D四点对应的有理数都是整数,若A对应的有理数为a,B对应的有理数为b,且b-2a=7,则数轴的原点是


A. A点
B. B点
C. C点
D. D点
相关习题

科目:初中数学 来源:同步题 题型:单选题

如图,已知在数轴上A、B、C、D四点对应的有理数都是整数,若A对应的有理数为a,B对应的有理数为b,且b-2a=7,则数轴的原点是
[     ]
A. A点
B. B点
C. C点
D. D点

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c的顶点坐标为E(1,0),与y轴的交点坐标为(0,1).
(1)求该抛物线的函数关系式.
(2)A、B是x轴上两个动点,且A、B间的距离为AB=4,A在B的左边,过A作AD⊥x轴交抛物线于D,过B作BC⊥x轴交抛物线于C.设A点的坐标为(t,0),四边形ABCD的面积为S.
①求S与t之间的函数关系式.
②求四边形ABCD的最小面积,此时四边形ABCD是什么四边形?
③当四边形ABCD面积最小时,在对角线BD上是否存在这样的点P,使得△PAE的周长最小,若存在,请求出点P的坐标及这时△PAE的周长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax2+bx+c的象经过A(-1,0)、B(3,0)、N(2,精英家教网3)三点,且与y轴交于点C.
(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=x2+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(-1,0),点C的坐标为(0,-3),抛物线的顶点为D.
(1)求抛物线的解析式和顶点D的坐标;
(2)二次函数的图象上是否存在点P,使得S△PAB=8S△ABD?若存在,求出P点坐标;若不存在,请说明理由
(3)若抛物线的对称轴与x轴交于E点,点F在直线BC上,点M在的二次函数图象上,如果以点F、M、D、E为顶点的四边形是平行四边形,请你求出符合条件的点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=(x-1)2的图象的顶点为C点,图象与直线y=x+m的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.
(1)求m的值;
(2)点P为线段AB上的一个动点(点P与A、B不重合),过点P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数解析式,并写出自变量x的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数y=ax2+bx+c的象经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.
(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;
(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;
(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数y=-x2+2mx的图象经过点B(1,2),与x轴的另一个交点为A,点B关于抛物线对称轴的对称点为C,过点B作直线BM⊥x轴垂足为点M.
(1)求二次函数的解析式;
(2)在直线BM上有点P(1,数学公式),联结CP和CA,判断直线CP与直线CA的位置关系,并说明理由;
(3)在(2)的条件下,在坐标轴上是否存在点E,使得以A、C、P、E为顶点的四边形为直角梯形?若存在,求出所有满足条件的点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数y=ax2+bx+c的图象经过点A(-4,0),B(-1,3),C(-3,3)
(1)求此二次函数的解析式;
(2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线l的对称点为M,点M关于y轴的对称点为N,若四边形OAPN的面积为20,求m、n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知点(1,2)在函数y=数学公式(x>0)的图象上,矩形ABCD的边BC在x正半轴上,E是对角线AC、BD的交点,函数y=数学公式(x>0)的图象又经过A,E两点,点E的纵坐标为m.
(1)求k的值;
(2)求点A的坐标(用m表示);
(3)是否存在实数m,使四边形ABCD为正方形?若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线y=x2+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(-1,0),点C的坐标为(0,-3),抛物线的顶点为D.
(1)求抛物线的解析式和顶点D的坐标;
(2)二次函数的图象上是否存在点P,使得S△PAB=8S△ABD?若存在,求出P点坐标;若不存在,请说明理由
(3)若抛物线的对称轴与x轴交于E点,点F在直线BC上,点M在的二次函数图象上,如果以点F、M、D、E为顶点的四边形是平行四边形,请你求出符合条件的点M的坐标.

查看答案和解析>>


同步练习册答案