精英家教网 > 初中数学 > 题目详情
如图,A,B是函数的图象上关于原点对称的两点,BC∥x轴,AC∥y轴,△ABC的面积记为S,则


A S=2
B S=4
C 2<S<4
D.S>4
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知:正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=
k
x
(k>0,x>0)的图象上,点P(m,n)是函数y=
k
x
(k>0,x>0)的图象上的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF中和正方形OABC不重合部分的面积为S.
(1)求点B坐标和k的值.
(2)当S=
9
2
时,求P的坐标.
(3)写出S关于m的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,设P是函数y=-
4
x
在第二象限的图象上的任意一点,点P关于原点的对称点P′,过P作PA∥y轴,过P′作P′A∥x轴,PA与P′A交于点A,则△PAP′的面积是(  )
A、2B、4
C、8D、随P的变化而变化

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=
k
x
的图象上,点P(m,n)是函数y=
k
x
(k>0,x>0)的图象上的一点(与点B不重合),过点P分别作x轴、y轴的垂线,垂足分别为E、F精英家教网.并设阴影部分为S.
(1)求B点坐标和k的值;
(2)求S关于m的函数关系式;
(3)当S=
9
2
时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,设点P是函数y=
1x
在第一象限图象上的任意一点,点P关于原点O的对称点为P′,过点P作直线PA平行于y轴,过点P′作直线P′A平行于x轴,PA与P′A相交于点A,则△PAP′的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,A,C是函数y=
k
x
(k≠0)的图象上关于原点对称的任意两点,AB,CD垂直于x轴,垂足分别为B,D,那么四边形ABCD的面积S是(  )
A、
k
2
B、2k
C、4k
D、k

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系内,以y轴为对称轴的抛物线经过直y=-
3
3
x+2与y轴的交点A和点M(-
3
2
,0).
(1)求这条抛物线所对应的二次函数的关系式;
(2)将(1)中所求抛物线沿x轴向右平移.①在题目所给的图中画出沿x轴平移后经过原点的抛物线大致图象;②设沿x轴向右平移后经过原点的抛物线对称轴与直线AB相交于C点.判断以O为圆心,OC为半径的圆与直线AB的位置关系,并说明理由;
(3)P点是沿x轴向右平移后经过原点的抛物线对称轴上的点,求P点的坐标,使得以O,A,C,P四点为顶点的精英家教网四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,点P(x,y)是第一象限直线y=-x+6上的点,点A坐标是(5,0),O是坐标原点,△PAO的面积为m,则m关于x的函数关系式是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A在第一象限内,点B和点C在x轴上且关于原点对称,AO=AB,△ABO的面积为2且B(2,0)反比例函数过点A.
(1)求反比例函数的关系式;
(2)如果P是这个反比例函数图象上一点,且∠BPC=90°,求点P的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
m
x
(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其精英家教网中一次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).
(1)求一次函数的关系式;
(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=
17
(O为坐标原点),求反比例函数的关系式;
(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,O为坐标原点,△AOB为等边三角形,点A的坐标是(4
3
,0),点B在第一象限,AC是∠OAB的平分线,并且与y轴交于点E,点M为直线AC上一个动点,把△AOM绕点A顺时针旋转,使边AO与边AB重合,精英家教网得到△ABD.
(1)求直线OB的解析式;
(2)当点M与点E重合时,求此时点D的坐标;
(3)设点M的纵坐标为m,求△OMD的面积S关于m的函数解析式.

查看答案和解析>>


同步练习册答案