精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,设a=b=,D为线段BC上的点,且|DC|=2|BD|,则等于


A.a+b  
B.a+b
C.a-b
D.a-b
相关习题

科目:高中数学 来源:0103 期中题 题型:单选题

如图,在△ABC中,设a=b=,D为线段BC上的点,且|DC|=2|BD|,则等于
[     ]
A.a+b  
B.a+b
C.a-b
D.a-b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,已知A(-3,0),B(3,0),CD⊥AB于D,△ABC的垂心为
H且数学公式
(Ⅰ)求点H的轨迹方程;
(Ⅱ)设P(-1,0),Q(1,0),那么数学公式能否成等差数列?请说明理由;
(Ⅲ)设直线AH,BH与直线l:x=9分别交于M,N点,请问以MN为直径的圆是否经过定点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在Rt△ABC中,∠CAB=90°,|AB|=2,数学公式,一曲线E过点C,且曲线E上任一点到A,B两点的距离之和不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)设点Q是曲线E上的一动点,求线段QA中点的轨迹方程;
(3)设M,N是曲线E上不同的两点,直线CM和CN的倾斜角互补,试判断直线MN的斜率是否为定值.如果是,求这个定值;如果不是,请说明理由.
(4)若点D是曲线E上的任一定点(除曲线E与直线AB的交点),M,N是曲线E上不同的两点,直线DM和DN的倾斜角互补,直线MN的斜率是否为定值呢?如果是,请你指出这个定值.(本小题不必写出解答过程)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省岳阳一中高二(下)数学综合练习试卷7(解析版) 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBl∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>时,连接C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式;
②当线段A′C′与射线BB,有公共点时,求t的取值范围(写出答案即可).

查看答案和解析>>

科目:高中数学 来源:2005-2006学年江苏省常州市武进区前黄高中高二(上)期末数学试卷(解析版) 题型:解答题

如图,在Rt△ABC中,∠CAB=90°,|AB|=2,,一曲线E过点C,且曲线E上任一点到A,B两点的距离之和不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)设点Q是曲线E上的一动点,求线段QA中点的轨迹方程;
(3)设M,N是曲线E上不同的两点,直线CM和CN的倾斜角互补,试判断直线MN的斜率是否为定值.如果是,求这个定值;如果不是,请说明理由.
(4)若点D是曲线E上的任一定点(除曲线E与直线AB的交点),M,N是曲线E上不同的两点,直线DM和DN的倾斜角互补,直线MN的斜率是否为定值呢?如果是,请你指出这个定值.(本小题不必写出解答过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

从A,B,C,D四个中选做2个,每题10分,共20分

A.选修4—1 几何证明选讲

如图,设△ABC的外接圆的切线AEBC的延长线交于点E,∠BAC的平分线与BC交于点D。求证:

B.选修4—2 矩阵与变换

在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程。

C.选修4—4 参数方程与极坐标

在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。

D.选修4—5 不等式证明选讲

abc为正实数,求证:

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试数学试题(江苏卷) 题型:解答题

从A,B,C,D四个中选做2个,每题10分,共20分

A.选修4—1 几何证明选讲
如图,设△ABC的外接圆的切线AEBC的延长线交于点E,∠BAC的平分线与BC交于点D。求证:
B.选修4—2 矩阵与变换
在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程。
C.选修4—4 参数方程与极坐标
在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。
D.选修4—5 不等式证明选讲
abc为正实数,求证:

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修二空间点、直线、平面之间的位置关系练习卷(二) 题型:解答题

如图,正三角形ABC的边长为2,D、E、F分别为各边的中点将△ABC沿DE、EF、DF折叠,使A、B、C三点重合,构成三棱锥A— DEF  .

(I)求平面ADE与底面DEF所成二面角的余弦值

(Ⅱ)设点M、N分别在AD、EF上, (λ>O,λ为变量)

①当λ为何值时,MN为异面直线AD与EF的公垂线段? 请证明你的结论②设异面直线MN与AE所成的角为a,异面直线MN与DF所成的角为β,试求a+β 的值

 

查看答案和解析>>

科目:高中数学 来源:2008年普通高等学校招生全国统一考试数学试题(江苏卷) 题型:解答题

从A,B,C,D四个中选做2个,每题10分,共20分

A.选修4—1 几何证明选讲

如图,设△ABC的外接圆的切线AEBC的延长线交于点E,∠BAC的平分线与BC交于点D。求证:

B.选修4—2 矩阵与变换

在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程。

C.选修4—4 参数方程与极坐标

在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。

D.选修4—5 不等式证明选讲

abc为正实数,求证:

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

从A,B,C,D四个中选做2个,每题10分,共20分
A.选修4—1 几何证明选讲
如图,设△ABC的外接圆的切线AEBC的延长线交于点E,∠BAC的平分线与BC交于点D。求证:
B.选修4—2 矩阵与变换
在平面直角坐标系中,设椭圆在矩阵对应的变换作用下得到曲线F,求F的方程。
C.选修4—4 参数方程与极坐标
在平面直角坐标系中,点是椭圆上的一个动点,求的最大值。
D.选修4—5 不等式证明选讲
abc为正实数,求证:

查看答案和解析>>


同步练习册答案