| 设f(x)=(2x+1)6,则f(x)的导函数f′(x)展开式中x3的系数为 |
A.960 B.480 C.240 D.160 |
科目:高中数学 来源:2011年山西省太原五中高考数学模拟试卷(理科)(解析版) 题型:选择题
科目:高中数学 来源:2010年东北三省长春、哈尔滨、沈阳、大连第二次联考数学试卷(理科)(解析版) 题型:选择题
科目:高中数学 来源:2010年吉林省长春市高考数学三模试卷(理科)(解析版) 题型:选择题
科目:高中数学 来源: 题型:
| 2x+2014 |
| 3x+7 |
| π |
| 2 |
| x1+x2 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| π |
| 6 |
| π |
| 3 |
科目:高中数学 来源:不详 题型:填空题
| 2x+2014 |
| 3x+7 |
| π |
| 2 |
| x1+x2 |
| 2 |
| 1 |
| 2 |
| 1 |
| 6 |
| π |
| 6 |
| π |
| 3 |
科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题
已知函数f(x)=alnx-x2+1.
(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
【解析】第一问中利用f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。
(1)f′(x)=
-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,
∵g′(x)=
-2x+1=
(x>0),
∴-2x2+x+a≤0在x>0时恒成立,
∴1+8a≤0,a≤-
,又a<0,
∴a的取值范围是![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com