精英家教网 > 高中数学 > 题目详情
已知m,n为正整数,当x>-1时,(1+x)m和1+mx的关系正确的是

A.(1+x)m<1+mx
B.(1+x)m>1+mx
C.(1+x)m≤1+mx
D.(1+x)m≥1+mx
相关习题

科目:高中数学 来源:同步题 题型:解答题

已知m,n为正整数。
(1)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(2)对于n≥6,已知,求证:,m=1,2…,n;
(3)求出满足等式3n+4n+…+(n+2)n=(n+3)n的所有正整数n。

查看答案和解析>>

科目:高中数学 来源:湖北省高考真题 题型:解答题

已知m,n为正整数。
(1)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(2)对于n≥6,已知,求证:,m=1,2…,n;
(3)求出满足等式3n+4n+…+(n+2)n=(n+3)n的所有正整数n。

查看答案和解析>>

科目:高中数学 来源: 题型:044

(2007湖北,21)已知mn为正整数.

(1)用数学归纳法证明:当x>-1时,

(2)对于n6,已知,求证m=12,…,n

(3)求出满足等式的所有正整数n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,设函数f(x)=mg(x)-ln(x+1),其中m为非零常数
(1)求函数g(x)的解析式;
(2)当-2<m<0时,判断函数f(x)的单调性并且说明理由;
(3)证明:对任意的正整数n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(1,
1
3
)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).记数列{
1
bnbn+1
}前n项和为Tn
(1)求数列{an}和{bn}的通项公式;
(2)若对任意正整数n,当m∈[-1,1]时,不等式t2-2mt+
1
2
>Tn恒成立,求实数t的取值范围
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax+a(a∈R,x>0)
(I)求函数f(x)的单调区间;
(II)若f(x)≤0在x∈(0,+∞)上恒成立.
(i) 求a的取值范围;
(ii) 设n为给定不小于4的正整数,当m>n时,求证:
n
k=1
f(m)-f(k)
m-k
<-
n
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2,3,…,2n}(n∈N*).对于A的一个子集S,若S满足性质P:“存在不大于n的正整数m,使得对于S中的任意一对元素s1,s2,都有|s1-s2|≠m”,则称S为理想集.对于下列命题:
①当n=10时,集合B={x∈A|x>9}是理想集;
②当n=10时,集合C={x∈A|x=3k-1,k∈N*}是理想集;
③当n=1 000时,集合S是理想集,那么集合T={2 001-x|x∈S}也是理想集.
其中的真命题是
②③
②③
(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知集合A={1,2,3,…,2n}(n∈N*).对于A的一个子集S,若S满足性质P:“存在不大于n的正整数m,使得对于S中的任意一对元素s1,s2,都有|s1-s2|≠m”,则称S为理想集.对于下列命题:
①当n=10时,集合B={x∈A|x>9}是理想集;
②当n=10时,集合C={x∈A|x=3k-1,k∈N*}是理想集;
③当n=1 000时,集合S是理想集,那么集合T={2 001-x|x∈S}也是理想集.
其中的真命题是______(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,设函数f(x)=mg(x)-ln(x+1),其中m为非零常数
(1)求函数g(x)的解析式;
(2)当-2<m<0时,判断函数f(x)的单调性并且说明理由;
(3)证明:对任意的正整数n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
恒成立.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市富阳二中高三(下)3月月考数学试卷(理科)(解析版) 题型:解答题

已知点是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足:.记数列前n项和为Tn
(1)求数列an和bn的通项公式;
(2)若对任意正整数n,当m∈[-1,1]时,不等式恒成立,求实数t的取值范围.

查看答案和解析>>


同步练习册答案