精英家教网 > 高中数学 > 题目详情
数列{xn}满足xn+1=xn+xn+2,已知x1=a,x2=b,则x2011的值为(    )。

A.b
B.a
C.-a
D.-b
相关习题

科目:高中数学 来源: 题型:填空题

数列{xn}满足xn+1=xn+xn+2,已知x1=a,x2=b,则x2011的值为________.

查看答案和解析>>

科目:高中数学 来源:山西省模拟题 题型:填空题

数列{xn}满足xn+1=xn+xn+2,已知x1=a,x2=b,则x2011的值为(    )。

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•晋中三模)数列{xn}满足xn+1=xn+xn+2,已知x1=a,x2=b,则x2011的值为
a
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x1>0,x1≠1且xn+1(n=1,2,…),试证:“数列{xn}对任意的正整数n都满足xn>xn+1”,当此题用反证法否定结论时应为                      (  )

A.对任意的正整数n,有xnxn+1

B.存在正整数n,使xnxn+1

C.存在正整数n,使xnxn+1

D.存在正整数n,使xnxn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
bx+1
(ax+1)2
(x≠-
1
a
,a>0)
,且f(1)=log162,f(-2)=1.
(1)求函数f(x)的表达式;
(2)若数列xn的项满足xn=[1-f(1)]•[1-f(2)]•…•[1-f(n)],试求x1,x2,x3,x4
(3)猜想数列xn的通项,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知首项为x1的数列{xn}满足xn+1=
axnxn+1
(a为常数).
(1)若对于任意的x1≠-1,有xn+2=xn对于任意的n∈N*都成立,求a的值;
(2)当a=1时,若x1>0,数列{xn}是递增数列还是递减数列?请说明理由;
(3)当a确定后,数列{xn}由其首项x1确定,当a=2时,通过对数列{xn}的探究,写出“{xn}是有穷数列”的一个真命题(不必证明).说明:对于第3题,将根据写出真命题所体现的思维层次和对问题探究的完整性,给予不同的评分.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
ax+b
(a、b为常数且a≠0)满足f(2)=1且f(x)=x有唯一解.
(1)求f(x)的表达式;
(2)记xn=f(xn-1)(n∈N且n>1),且x1=f(1),求数列{xn}的通项公式.
(3)记 yn=xn•xn+1,数列{yn}的前n项和为Sn,求证Sn
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn}满足x2=
x1
2
,xn=
1
2
(xn-1+xn-2),n=3,4,….若
lim
n→∞
xn
=2,则x1=(  )
A、
3
2
B、3
C、4
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点列An(xn,0)满足:
A0An
A1An+1
=a-1
,其中n∈N,又已知x0=-1,x1=1,a>1.
(1)若xn+1=f(xn)(n∈N*),求f(x)的表达式;
(2)已知点B(
a
,0)
,记an=|BAn|(n∈N*),且an+1<an成立,试求a的取值范围;
(3)设(2)中的数列an的前n项和为Sn,试求:Sn
a
-1
2-
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x2+4x,给定x1,数列{xn}满足xn=f(xn-1)(n=2,3,4,…),若无穷个项的数列{xn}中的项能取的不同的值为有限个,则x1的不同的值的个数m满足(  )
A、m=0B、1≤m≤5C、m>5且m只有有穷个D、m有无穷个

查看答案和解析>>


同步练习册答案