精英家教网 > 高中数学 > 题目详情
曲线y=x(x-1)(x-2)在原点处的切线方程为

A.y=-x
B.y=-2x
C.y=x
D.y=2x
相关习题

科目:高中数学 来源:0125 模拟题 题型:单选题

曲线y=x(x-1)(x-2)在原点处的切线方程为
[     ]
A.y=-x
B.y=-2x
C.y=x
D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:

7、中心在原点,对称轴为坐标轴的双曲线的渐近线方程为y=±x,且双曲线过点P(2,1),则双曲线的标准方程为
x2-y2=3

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知曲线C的极坐标方程为ρ2=
36
4cos2θ+9sin2θ

(Ⅰ)若以极点为原点,极轴所在的直线为x轴,求曲线C的直角坐标方程;
(Ⅱ)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值
(2)已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2+m-1=0

(I)求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(II)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=|x-2|+|x-4|的最小值为m,实数a,b,c,n,p,q
满足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求证:
n4
a2
+
p4
b2
+
q4
c2
≥2

(2)已知在直角坐标系xOy中,曲线C的参数方程为
x=2tcosθ
y=2sinθ
(t为非零常数,θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数t,使得直线l与曲线C有两个不同的公共点A、B,且
OA
OB
=10
(其中O为坐标原点)?若存在,请求出;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)抛物线的顶点在原点,焦点在射线x-y+1=0(x≥0)上求抛物线的标准方程;
(2)求一条渐近线方程是3x+4y=0,一个焦点是(5,0)的双曲线标准方程,并求此双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-4:矩阵与变换
已知曲线C1:y=
1
x
绕原点逆时针旋转45°后可得到曲线C2:y2-x2=2,
(I)求由曲线C1变换到曲线C2对应的矩阵M1;    
(II)若矩阵M2=
20
03
,求曲线C1依次经过矩阵M1,M2对应的变换T1,T2变换后得到的曲线方程.
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
x=-1+cosθ
y=sinθ
(θ为参数)上求一点,使它到直线l的距离最小,并求出该点坐标和最小距离.
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)抛物线的顶点在原点,焦点在射线x-y+1=0(x≥0)上求抛物线的标准方程;
(2)求一条渐近线方程是3x+4y=0,一个焦点是(5,0)的双曲线标准方程,并求此双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)点A(2,-4)在以原点为顶点,坐标轴为对称轴的抛物线上,求抛物线方程;
(2)已知双曲线C经过点(1,1),它渐近线方程为y=±数学公式x,求双曲线C的标准方程.

查看答案和解析>>

科目:高中数学 来源:江西 题型:填空题

若曲线y=xα+1(α∈R)在点(1,2)处的切线经过坐标原点,则α=______.

查看答案和解析>>

科目:高中数学 来源:福建模拟 题型:解答题

(1)选修4-2:矩阵与变换
已知向量
1
-1
在矩阵M=
1m
01
变换下得到的向量是
0
-1

(Ⅰ)求m的值;
(Ⅱ)求曲线y2-x+y=0在矩阵M-1对应的线性变换作用下得到的曲线方程.
(2)选修4-4:极坐标与参数方程
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知点M的极坐标为(4
2
π
4
)
,曲线C的参数方程为
x=1+
2
cosα
y=
2
sinα
(α为参数).
(Ⅰ)求直线OM的直角坐标方程;
(Ⅱ)求点M到曲线C上的点的距离的最小值.
(3)选修4-5:不等式选讲
设实数a,b满足2a+b=9.
(Ⅰ)若|9-b|+|a|<3,求a的取值范围;
(Ⅱ)若a,b>0,且z=a2b,求z的最大值.

查看答案和解析>>


同步练习册答案