精英家教网 > 高中数学 > 题目详情
如图,圆A的方程为:(x+3)2+ y2=100,定点B(3,0),动点P为圆A上的任意一点,线段BP的垂直平分线和半径AP相交于点Q,当点P在圆A 上运动时,动点Q的轨迹方程为

A.
B.
C.
D.
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,圆A的方程为:(x+3)2+y2=100,定点B(3,0),动点P为圆A上的任意一点.线段BP的垂直平分线和半径AP相交于点Q,当点P在圆A上运动时,
(1)求|QA|+|QB|的值,并求动点Q的轨迹方程;
(2)设Q点的横坐标为x,记PQ的长度为f(x),求函数f (x)的值域.

查看答案和解析>>

科目:高中数学 来源:专项题 题型:解答题

如图,圆A的方程为:(x+3)2+ y2=100,定点B(3,0),动点P为圆A上的任意一点,线段BP的垂直平分线和半径AP相交于点Q,当点P在圆A 上运动时。
(1)求|QA|+|QB|的值,并求动点Q的轨迹方程;
(2)设Q点的横坐标为x,记PQ的长度为f(x),求函数f(x)的值域。

查看答案和解析>>

科目:高中数学 来源:2009年广东省汕头市高考数学一模试卷(文科)(解析版) 题型:解答题

如图,圆A的方程为:(x+3)2+y2=100,定点B(3,0),动点P为圆A上的任意一点.线段BP的垂直平分线和半径AP相交于点Q,当点P在圆A上运动时,
(1)求|QA|+|QB|的值,并求动点Q的轨迹方程;
(2)设Q点的横坐标为x,记PQ的长度为f(x),求函数f (x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

14、如图,点O是已知线段AB上一点,以OA为半径的⊙O交线段AB于点C,以线段OB为直径的圆与⊙O的一个交点为D,过点A作AB的垂线交BD的延长线于点M.
(1)求证:BD是⊙O的切线;
(2)若BC,BD的长度是关于x的方程x2-6x+8=0的两个根,求⊙O的半径;
(3)在上述条件下,求线段MD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,F是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点,A,B分别是椭圆的两个顶点,椭圆的离心率为
1
2
,点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1:x+
3
y+3=0
相切
(1)求椭圆的方程;
(2)过点A的直线l2与圆M交于P,Q两点,且
MP
MQ
=-2
,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,抛物线C1:y2=8x与双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)
有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且|AF2|=5.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)以F1为圆心的圆M与双曲线的一条渐近线相切,圆N:(x-2)2+y2=1.平面上有点P满足:存在过点P的无穷多对互相垂直的直线l1,l2,它们分别与圆M,N相交,且直线l1被圆M截得的弦长与直线l2被圆N截得的弦长的比为
3
:1
,试求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知焦点在x轴上的椭圆
x2
20
+
y2
b2
=1(b>0)
经过点M(4,1),直线l:y=x+m交椭圆于A,B两不同的点.
(1)求该椭圆的标准方程;
(2)求实数m的取值范围;
(3)是否存在实数m,使△ABM为直角三角形,若存在,求出m的值,若不存,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在椭圆C中,点F1是左焦点,A(a,0),B(0,b)分别为右顶点和上顶点,点O为椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的射影.
(1)求证:当a取定值时,点H必为定点;
(2)如果点H落在左顶点与左焦点之间,试求椭圆离心率的取值范围;
(3)如果以OP为直径的圆与直线AB相切,且凸四边形ABPH的面积等于3+
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,抛物线C1:y2=8x与双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)有公共焦点F2,点A是曲线C1,C2在第一象限的交点,且|AF2|=5.
(1)求双曲线C2的方程;
(2)以F1为圆心的圆M与双曲线的一条渐近线相切,圆N:(x-2)2+y2=1,已知点P(1,
3
),过点P作互相垂直且分别与圆M圆N相交的直线l1,l2,设l1被圆M截得的弦长为s,l2被圆N截得的弦长为t,
s
t
是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知在坐标平面内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为
3
2
,点A坐标为(1+
3
3
2
),
MP
=m•
OA
(m为常数)
MN
OP
=|
MN
|

(Ⅰ)求以M、N为焦点且过点P的椭圆方程;
(Ⅱ)过点B(-1,0)的直线l交椭圆于C、D两点,交直线x=-4于点E,点B、E分
CD
的比分别为λ1
、λ2,求证:λ12=0.

查看答案和解析>>


同步练习册答案