精英家教网 > 高中数学 > 题目详情
直线l过椭圆的右焦点F2,并与椭圆交与A、B两点,则△ABF1的周长是

A.4
B.6
C.8
D.16

相关习题

科目:高中数学 来源: 题型:

直线l过椭圆
x2
4
+
y2
3
=1的右焦点F2
并与椭圆交与A、B两点,则△ABF1的周长是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

以椭圆的右焦点F2为圆心作一个圆过椭圆的中心O并交于椭圆于M、N,若过椭圆左焦点F1的直线MF1是圆的切线,则椭圆的右准线l与圆F2的位置关系是
相交
相交

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l过椭圆
x2
4
+
y2
3
=1的右焦点F2
并与椭圆交与A、B两点,则△ABF1的周长是(  )
A.4B.6C.8D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线l过椭圆
x2
4
+
y2
3
=1的右焦点F2
并与椭圆交与A、B两点,则△ABF1的周长是(  )
A.4B.6C.8D.16

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:填空题

以椭圆的右焦点F2为圆心作一个圆过椭圆的中心O并交于椭圆于M、N,若过椭圆左焦点F1的直线MF1是圆的切线,则椭圆的右准线l与圆F2的位置关系是   

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

以椭圆的右焦点F2为圆心作一个圆过椭圆的中心O并交于椭圆于M、N,若过椭圆左焦点F1的直线MF1是圆的切线,则椭圆的右准线l与圆F2的位置关系是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,P为椭圆C上任意一点.已知
PF1
PF2
的最大值为3,最小值为2.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于M、N两点(M、N不是左右顶点),且以MN为直径的圆过点A.求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆C=1(ab>0)的左、右焦点分别是F1F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1PF2的斜率分别为k1k2.若k≠0,试证明为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题5第3课时练习卷(解析版) 题型:解答题

椭圆C1(ab0)的左、右焦点分别是F1F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.

(1)求椭圆C的方程;

(2)P是椭圆C上除长轴端点外的任一点,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1PF2的斜率分别为k1k2.k≠0,试证明为定值,并求出这个定值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆C:数学公式的左、右焦点分别为F1(-1,0)、F2(1,0),O是坐标原点,C的右顶点和上顶点分别为A、B,且△AOB的面积为数学公式
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(4,0)作与x轴不重合的直线l与C交于相异两点M、N,交y轴于Q点,证明数学公式为定值,并求这个定值.

查看答案和解析>>


同步练习册答案