精英家教网 > 高中数学 > 题目详情
函数y=(2x+1)2在x=0处的导数是(  )
A.0B.1C.3D.4
相关习题

科目:高中数学 来源: 题型:

函数y=(2x+1)2在x=0处的导数是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=(2x+1)2在x=0处的导数是(  )
A.0B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省台州外国语学校高二(下)第一次月考数学试卷(理科)(解析版) 题型:选择题

函数y=(2x+1)2在x=0处的导数是( )
A.0
B.1
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足条件:①在x=1处导数为0;②图象过点P(0,-3);③在点P处的切线与直线2x+y=0平行.
(1)求函数f(x)的解析式.
(2)求在点Q(2,f(2))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设f(x)=
g(x)
x

(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为
2
,求m的值;
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省南京九中高三(上)期初数学试卷(解析版) 题型:解答题

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设
(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为,求m的值;
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市海淀区北方交大附中高三数学假期作业检测(理科)(解析版) 题型:解答题

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设
(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为,求m的值;
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省黄石市大冶实验高中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设
(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为,求m的值;
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省清远市盛兴中英文学校中学部高三(上)9月月考数学试卷(文科)(解析版) 题型:解答题

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设
(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为,求m的值;
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源:2013年高考数学复习卷D(二)(解析版) 题型:解答题

已知二次函数y=g(x)的导函数的图象与直线y=2x平行,且y=g(x)在x=-1处取得极小值m-1(m≠0).设
(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为,求m的值;
(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

查看答案和解析>>


同步练习册答案