精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠C=90°,已知∠B和a,则有(  )
A.c=asinBB.c=acosBC.c=
a
cosB
D.c=
a
sinB
相关习题

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,已知∠B和a,则有(  )
A、c=asinB
B、c=acosB
C、c=
a
cosB
D、c=
a
sinB

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在Rt△ABC中,∠C=90°,已知∠B和a,则有(  )
A.c=asinBB.c=acosBC.c=
a
cosB
D.c=
a
sinB

查看答案和解析>>

科目:初中数学 来源:2010年江西省吉安市二中中考数学模拟试卷(解析版) 题型:选择题

在Rt△ABC中,∠C=90°,已知∠B和a,则有( )
A.c=asinB
B.c=acosB
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法:
①在Rt△ABC中,∠C=90°,CD为AB边上的中线,且CD=2,则AB=4;
②八边形的内角和度数为1080°;
③2、3、4、3这组数据的方差为0.5;
④分式方程
1
x
=
3x-1
x
的解为x=
2
3

⑤已知菱形的一个内角为60°,一条对角线为2
3
,则另一对角线为2.
其中正确的结论有(  )个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法:
①在Rt△ABC中,∠C=90°,CD为AB边上的中线,且CD=2,则AB=4;
②八边形的内角和度数为1080°;
③2、3、4、3这组数据的方差为0.5;
④分式方程
1
x
=
3x-1
x
的解为x=
2
3

⑤已知菱形的一个内角为60°,一条对角线为2
3
,则另一对角线为2.
其中正确的结论有(  )个.
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网精英家教网阅读并解答问题.
如图,已知:AD为△ABC的中线,求证:AB+AC>2AD.
证明:延长AD至E使得DE=AD,连接EC,则AE=2AD
∵AD为△ABC的中线
∴BD=CD
在△ABD和△CED中
(     )
(     )
(     )

∴△ABD≌△CED
∴AB=EC
在△ACE中,根据三角形的三边关系有
AC+EC
 
AE
而AB=EC,AE=2AD
∴AB+AC>2AD
这种辅助线方法,我们称为“倍长中线法”,请利用这种方法解决以下问题:
(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,求证:CD=
1
2
AB

(2)把(1)中的结论用简洁的语言描述出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读并解答问题.
如图,已知:AD为△ABC的中线,求证:AB+AC>2AD.
证明:延长AD至E使得DE=AD,连接EC,则AE=2AD
∵AD为△ABC的中线
∴BD=CD
在△ABD和△CED中
数学公式
∴△ABD≌△CED
∴AB=EC
在△ACE中,根据三角形的三边关系有
AC+EC______AE
而AB=EC,AE=2AD
∴AB+AC>2AD
这种辅助线方法,我们称为“倍长中线法”,请利用这种方法解决以下问题:
(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,求证:CD=数学公式
(2)把(1)中的结论用简洁的语言描述出来.

查看答案和解析>>

科目:初中数学 来源:江苏省期末题 题型:解答题

阅读并解答问题.
如图,已知:AD为△ABC的中线,求证:AB+AC>2AD。
证明:延长AD至E使得DE=AD,连接EC,则AE=2AD
∵AD为△ABC的中线,
∴BD=CD
在△ABD和△CED中
∴△ABD≌△CED,
∴AB=EC,
在△ACE中,根据三角形的三边关系有AC+EC ____AE
而AB=EC,AE=2AD
∴AB+AC>2AD
这种辅助线方法,我们称为“倍长中线法”,
请利用这种方法解决以下问题:
(1)如图,已知:CD为Rt△ABC的中线,∠ACB=90°,
求证:CD=
(2)把(1)中的结论用简洁的语言描述出来。

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳)下列说法中正确的序号有
①②③④
①②③④

①在Rt△ABC中,∠C=90°,CD为AB边上的中线,且CD=2,则AB=4;
②八边形的内角和度数约为1080°;
③2、3、4、3这组数据的方差为0.5;
④分式方程
1
x
=
3x-1
x
的解为x=
2
3

⑤已知菱形的一个内角为60°,一条对角线为2
3
,则另一条对角线长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法
①如图1,扇形OAB的圆心角∠AOB=90°,OA=6,点C是
AB
上异于A、B的动点,过点C作CD⊥OA于D,作CE⊥OB于E,连接DE,点G在线段DE上,且DG=
1
3
DE
,连接CG.当点C在
AB
上运动时,在CD、CG、DG中,长度不变的是DG;
②如图2,正方形纸片ABCD的边长为8,⊙O的半径为2,圆心O在正方形的中心上,将纸片按图示方式折叠,折叠后点A于点H重合,且EH切⊙O于点H,延长FH交CD边于点G,则HG的长为
19
3

③已知Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,则其内心和外心之间的距离是
5
cm

其中正确的有
①②
①②
 (请写序号,少选,错选均不得分)

查看答案和解析>>


同步练习册答案