精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,已知一次函数y=kx+b的图象大致如图所示,则下列结论正确的是(  )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0.
魔方格
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系中,已知一次函数y=kx+b的图象大致如图所示,则下列结论正确的是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,已知一次函数y=kx+b的图象大致如图所示,则下列结论正确的是(  )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

在平面直角坐标系中,已知一次函数y=kx+b的图象大致如图所示,则下列结论正确的是


  1. A.
    k>0,b>0
  2. B.
    k>0,b<0
  3. C.
    k<0,b>0
  4. D.
    k<0,b<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,点C为反比例函数y=
k
x
(k>0)在第一象限内图象上一点,以点A(-2,-2)和C为顶点的矩形ABCD中,AB∥CD∥x轴,AB交y轴于点Q,CD交y轴于点M,BC∥DA∥y轴于点I,DA交x轴于点N,矩形ABCD被坐标轴分成的四个四边形的面积分别为S1,S2,S3,S4(如图1所示),已知S1=3S3

(1)求k的值;
(2)S2•S4的值为
48
48

(3)P(0,n)为y轴上一点,以AP为边作正方形APFG(A,P,F,G的位置依次为顺时针方向排列),当点F或G恰好落在反比例函数y=
k
x
的图象上(示意图如图2所示)时,求所有满足条件的n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).
(1)求此二次函数的表达式;
(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;
(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较精英家教网锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且
OAOB
=3
,那么点A的坐标是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,二次函数y1=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在精英家教网点B的左侧),与y轴交于点C.
(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y2=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:北京中考真题 题型:解答题

在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C。
(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于N,若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.

1.求点A的坐标;

2.当∠ABC=45°时,求m的值;

3.已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.(友情提示:自画图形)

 

查看答案和解析>>


同步练习册答案