精英家教网 > 初中数学 > 题目详情
三条直线交于一点,所形成的对顶角的对数是(  )
A.3B.4C.5D.6
相关习题

科目:初中数学 来源: 题型:

3、三条直线交于一点,所形成的对顶角的对数是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

三条直线交于一点,所形成的对顶角的对数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

三条直线交于一点,所形成的对顶角的对数是


  1. A.
    3
  2. B.
    4
  3. C.
    5
  4. D.
    6

查看答案和解析>>

科目:初中数学 来源:期中题 题型:单选题

三条直线交于一点,所形成的对顶角的对数是
[     ]
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中数学 来源:新教材 同步练 数学 七年级下册 配人教版 题型:013

三条直线交于一点,所形成的对顶角有

[  ]

A.3对

B.4对

C.5对

D.6对

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作x轴的垂线段,垂足分别为M(m,0)和N(n,0),其中m<0,n>0.
(1)如果m=-4,n=1,试判断△AMN的形状;
(2)如果mn=-4,(1)中有关△AMN的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;
(3)如图2,题目中的条件不变,如果mn=-4,并且ON=4,求经过M、A、N三点的抛物线所对应的函数关系式;
(4)在(3)的条件下,如果抛物线的对称轴l与线段AN交于点P,点Q是对称轴上一动点,以点P、Q、N为顶点的三角形和以点M、A、N为顶点的三角形相似,求符合条件的点Q的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源:2010年四川省绵阳市南山中学实验学校自主招生考试数学试卷(解析版) 题型:解答题

如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作x轴的垂线段,垂足分别为M(m,0)和N(n,0),其中m<0,n>0.
(1)如果m=-4,n=1,试判断△AMN的形状;
(2)如果mn=-4,(1)中有关△AMN的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;
(3)如图2,题目中的条件不变,如果mn=-4,并且ON=4,求经过M、A、N三点的抛物线所对应的函数关系式;
(4)在(3)的条件下,如果抛物线的对称轴l与线段AN交于点P,点Q是对称轴上一动点,以点P、Q、N为顶点的三角形和以点M、A、N为顶点的三角形相似,求符合条件的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作x轴的垂线段,垂足分别为M(m,0)和N(n,0),其中m<0,n>0.
(1)如果m=-4,n=1,试判断△AMN的形状;
(2)如果mn=-4,(1)中有关△AMN的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;
(3)如图2,题目中的条件不变,如果mn=-4,并且ON=4,求经过M、A、N三点的抛物线所对应的函数关系式;
(4)在(3)的条件下,如果抛物线的对称轴l与线段AN交于点P,点Q是对称轴上一动点,以点P、Q、N为顶点的三角形和以点M、A、N为顶点的三角形相似,求符合条件的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:四川省中考真题 题型:解答题

如图1,已知直线EA与x轴、y轴分别交于点E和点A(0,2),过直线EA上的两点F、G分别作轴的垂线段,垂足分别为M(m,0)和N(n,0),其中m<0,n>0。
(1)如果m=-4,n=1,试判断△AMN的形状;
(2)如果mn=-4,(1)中有关△AMN的形状的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;
(3)如图2,题目中的条件不变,如果mn=-4,并且ON=4,求经过M、A、N三点的抛物线所对应的函数关系式;
(4)在(3)的条件下,如果抛物线的对称轴与线段AN交于点P,点Q是对称轴上一动点,以点P、Q、N为顶点的三角形和以点M、A、N为顶点的三角形相似,求符合条件的点Q的坐标。

图1                                                        图2

查看答案和解析>>

科目:初中数学 来源: 题型:

在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.
(1)当点P在线段ED上时(如图1),求证:BE=PD+
3
3
PQ;
(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);
(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长.
精英家教网

查看答案和解析>>


同步练习册答案