精英家教网 > 初中数学 > 题目详情
若y=x2,则点(x,y)位于(  )
A.x轴上方(含x轴)B.x轴下方(含x轴)
C.y轴的右方(含y轴)D.y轴的左方(含y轴)
相关习题

科目:初中数学 来源: 题型:

若y=x2,则点(x,y)位于(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若y=x2,则点(x,y)位于(  )
A.x轴上方(含x轴)B.x轴下方(含x轴)
C.y轴的右方(含y轴)D.y轴的左方(含y轴)

查看答案和解析>>

科目:初中数学 来源:江西省期末题 题型:单选题

若y=x2,则点(x,y)位于
[     ]
A.x轴上方(含x轴)
B.x轴下方(含x轴)
C.y轴的右方(含y轴)
D.y轴的左方(含y轴)

查看答案和解析>>

科目:初中数学 来源:2010年四川省资阳市中考数学试卷(解析版) 题型:选择题

如图,已知点A1,A2,…,A2011在函数y=x2位于第二象限的图象上,点B1,B2,…,B2011在函数y=x2位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2010A2011C2011B2011都是正方形,则正方形C2010A2011C2011B2011的边长为( )

A.2010
B.2011
C.2010
D.2011

查看答案和解析>>

科目:初中数学 来源:2013年山东省东营市中考数学模拟试卷(三)(解析版) 题型:选择题

如图,已知点A1,A2,…,A2011在函数y=x2位于第二象限的图象上,点B1,B2,…,B2011在函数y=x2位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2010A2011C2011B2011都是正方形,则正方形C2010A2011C2011B2011的边长为( )

A.2010
B.2011
C.2010
D.2011

查看答案和解析>>

科目:初中数学 来源:2012年四川省资阳市中考数学模拟试卷(四)(解析版) 题型:选择题

如图,已知点A1,A2,…,A2011在函数y=x2位于第二象限的图象上,点B1,B2,…,B2011在函数y=x2位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2010A2011C2011B2011都是正方形,则正方形C2010A2011C2011B2011的边长为( )

A.2010
B.2011
C.2010
D.2011

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,AB=2,AC=BC=数学公式
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=数学公式S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).

附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=数学公式,y4=-数学公式
所以,原方程的解是y1=1,y2=-1,y3=数学公式,y4=-数学公式
再如x2-2=4数学公式,可设y=数学公式,用同样的方法也可求解.

查看答案和解析>>

科目:初中数学 来源:2012年广西柳州市中考数学试卷(解析版) 题型:解答题

如图,在△ABC中,AB=2,AC=BC=
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
 
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=,y4=-
所以,原方程的解是y1=1,y2=-1,y3=,y4=-
再如x2-2=4,可设y=,用同样的方法也可求解.

查看答案和解析>>

科目:初中数学 来源: 题型:

将抛物线y=-2(x-1)2向上平移m个单位长度,所得抛物线与x轴交于点A(x1,0),B(x2,0),若x12+x22=16,则m=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•资阳)如图,已知点A1,A2,…,A2011在函数y=x2位于第二象限的图象上,点B1,B2,…,B2011在函数y=x2位于第一象限的图象上,点C1,C2,…,C2011在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2010A2011C2011B2011都是正方形,则正方形C2010A2011C2011B2011的边长为(  )

查看答案和解析>>


同步练习册答案