精英家教网 > 初中数学 > 题目详情
如图所画出的数轴正确的是(  )
A.
魔方格
B.
魔方格
C.
魔方格
D.
魔方格
相关习题

科目:初中数学 来源: 题型:

如图所画出的数轴正确的是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所画出的数轴正确的是(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

数轴上的点A、B、C、D、O分别表示-1
1
2
、-5、2、4
1
2
、0.
(1)在如图所示的数轴上画出点A、B、C、D、O;
(2)比较这五点所表示的数的大小,用“<”号连接起来;
(3)有同学说:“B、D两点间的距离恰好是A、C两点间的距离的3倍”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在边长均为1的小正方形网格纸中,△OAB的顶点OAB均在格点上,且O是直角坐标系的原点,点A轴上.

(1)以O为位似中心,将△OAB放大,使得放大后的△OA1B1与△OAB对应线段的比为2∶1,画出△OA1B1(所画△OA1B1与△OAB在原点两侧).

(2)求∠AOB的度数.(结果精确到度)

 


查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•西城区模拟)如图,平面直角坐标系xOy中,点pn(xn,yn)在双曲线y=
6
x
上(n,xn,yn都是正整数,且x1<x2<x3<…<xn).抛物线y=ax2+bx+c经过(0,3),(-2,3),(1,0)三点.
x          
y          
(1)求抛物线y=ax2+bx+c的解析式并在坐标系中画出它的图象;
(2)直接写出点pn(xn,yn)的坐标,并写出pn中任意两点所确定的不同直线的条数;
(3)从(2)中得到的所有直线中随机(任意)取出一条,利用图象求取出的直线与抛物线有公共点的概率;
(4)设抛物线y=ax2+bx+c与x轴的交点分别为A,B(A在B左侧),将抛物线y=ax2+bx+c向上平移,平移后的抛物线与x轴的交点分别记为C,D(C在D左侧),求
SP1CB
SP1AD
值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,平面直角坐标系xOy中,点pn(xn,yn)在双曲线数学公式上(n,xn,yn都是正整数,且x1<x2<x3<…<xn).抛物线y=ax2+bx+c经过(0,3),(-2,3),(1,0)三点.
x
y
(1)求抛物线y=ax2+bx+c的解析式并在坐标系中画出它的图象;
(2)直接写出点pn(xn,yn)的坐标,并写出pn中任意两点所确定的不同直线的条数;
(3)从(2)中得到的所有直线中随机(任意)取出一条,利用图象求取出的直线与抛物线有公共点的概率;
(4)设抛物线y=ax2+bx+c与x轴的交点分别为A,B(A在B左侧),将抛物线y=ax2+bx+c向上平移,平移后的抛物线与x轴的交点分别记为C,D(C在D左侧),求数学公式值.

查看答案和解析>>

科目:初中数学 来源:2011年北京市西城区(北区)初三毕业考试数学试卷(解析版) 题型:解答题

如图,平面直角坐标系xOy中,点pn(xn,yn)在双曲线上(n,xn,yn都是正整数,且x1<x2<x3<…<xn).抛物线y=ax2+bx+c经过(0,3),(-2,3),(1,0)三点.
x     
y     
(1)求抛物线y=ax2+bx+c的解析式并在坐标系中画出它的图象;
(2)直接写出点pn(xn,yn)的坐标,并写出pn中任意两点所确定的不同直线的条数;
(3)从(2)中得到的所有直线中随机(任意)取出一条,利用图象求取出的直线与抛物线有公共点的概率;
(4)设抛物线y=ax2+bx+c与x轴的交点分别为A,B(A在B左侧),将抛物线y=ax2+bx+c向上平移,平移后的抛物线与x轴的交点分别记为C,D(C在D左侧),求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在平面直角坐标系中,正方形 OABC的顶点B的坐标为(2,2),A、C两点分别在x轴、y轴上.P是BC边上一点(不与B点重合),连AP并延长与x轴交于点E,当点P在边BC上移动时,△AOE的面积随之变化.
①设PB=a(0<a≤2).求出△AOE的面积S与a的函数关系式.
②根据①的函数关系式,确定点P在什么位置时,S△AOE=2,并求出此时直线AE的解析式.
③在所给的平面直角坐标系中画出①中函数的图象和函数S=-a+2的简图.
④设函数S=-a+2的图象交a轴于点G,交S轴于点D,点M是①的函数图象上的一动点,过M点向S轴作垂线交函数S=-a+2的图象于点H,过M点向a轴作垂线交函数S=-a+2的图象于点Q,请问DQ•HG的值是否会变化?若不变,精英家教网请求出此值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

在一节数学实践活动课上,吕老师手拿着三个正方形硬纸板和几个不同的圆形的盘子,他向同学们提出了这样一个问题:已知手中圆盘的直径为13cm,手中的三个正方形硬纸板的边长均为5cm,若将三个正方形纸板不重叠地放在桌面上,能否用这个圆盘将其盖住?问题提出后,同学们七嘴八舌,经过讨论,大家得出了一致性的结论是:本题实际上是求在不同情况下将三个正方形硬纸板无重叠地适当放置,圆盘能盖住时的最小直径.然后将各种情形下的直径值与13cm进行比较,若小于或等于13cm就能盖住,反之,则不能盖住.吕老师把同学们探索性画出的四类图形画在黑板上,如下图所示.
精英家教网
(1)通过计算,在①中圆盘刚好能盖住正方形纸板的最小直径应为
 
cm.(填准确数)
(2)图②能盖住三个正方形硬纸板所需的圆盘最小直径为
 
cm图③能盖住三个正方形硬纸板所需的圆盘最小直径为
 
cm?(结果填准确数)
(3)按④中的放置,考虑到图形的轴对称性,当圆心O落在GH边上时,此时圆盘的直径最小.请你写出该种情况下求圆盘最小直径的过程.(计算中可能用到的数据,为了计算方便,本问在计算过程中,根据实际情况最后的结果可对个别数据取整数)
(4)由(1)(2)(3)的计算可知:A.该圆盘能盖住三个正方形硬纸板,B.该圆盘不能盖住三个正方形硬纸板.你的结论是
 
.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在一节数学实践活动课上,吕老师手拿着三个正方形硬纸板和几个不同的圆形的盘子,他向同学们提出了这样一个问题:已知手中圆盘的直径为13cm,手中的三个正方形硬纸板的边长均为5cm,若将三个正方形纸板不重叠地放在桌面上,能否用这个圆盘将其盖住?问题提出后,同学们七嘴八舌,经过讨论,大家得出了一致性的结论是:本题实际上是求在不同情况下将三个正方形硬纸板无重叠地适当放置,圆盘能盖住时的最小直径.然后将各种情形下的直径值与13cm进行比较,若小于或等于13cm就能盖住,反之,则不能盖住.吕老师把同学们探索性画出的四类图形画在黑板上,如下图所示.

(1)通过计算,在①中圆盘刚好能盖住正方形纸板的最小直径应为______cm.(填准确数)
(2)图②能盖住三个正方形硬纸板所需的圆盘最小直径为______cm图③能盖住三个正方形硬纸板所需的圆盘最小直径为______cm?(结果填准确数)
(3)按④中的放置,考虑到图形的轴对称性,当圆心O落在GH边上时,此时圆盘的直径最小.请你写出该种情况下求圆盘最小直径的过程.(计算中可能用到的数据,为了计算方便,本问在计算过程中,根据实际情况最后的结果可对个别数据取整数)
(4)由(1)(2)(3)的计算可知:A.该圆盘能盖住三个正方形硬纸板,B.该圆盘不能盖住三个正方形硬纸板.你的结论是______.(填序号)

查看答案和解析>>


同步练习册答案