科目:初中数学 来源:辽宁省期末题 题型:单选题
科目:初中数学 来源: 题型:阅读理解
阅读下面材料:
小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形, ÐAOB=ÐCOD =90°.若△BOC的面积为1, 试求以AD、BC、OC+OD的长度为三边长的三角形的面积.
![]()
图1 图2
小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E, 使得OE=CO, 连接BE, 可证△OBE≌△OAD, 从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2).
请你回答:图2中△BCE的面积等于 .
请你尝试用平移、旋转、翻折的方法,解决下列问题:
如图3,已知△ABC, 分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI, 连接EG、FH、ID.
(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于 .
![]()
科目:初中数学 来源:2013年天津市南开区中考数学一模试卷(解析版) 题型:填空题
科目:初中数学 来源: 题型:阅读理解
科目:初中数学 来源: 题型:
科目:初中数学 来源: 题型:解答题
科目:初中数学 来源:不详 题型:解答题
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com