精英家教网 > 初中数学 > 题目详情
过平面上三点可以作几条直线?(  )
A.1条B.2条C.3条D.1条或3条
相关习题

科目:初中数学 来源: 题型:

17、过平面上三点可以作几条直线?(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

过平面上三点可以作几条直线?(  )
A.1条B.2条C.3条D.1条或3条

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料并填空.
平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…
②归纳:考察点的个数和可连成直线的条数Sn发现:如下表
点的个数 可作出直线条数
2 1=S2=
2×1
2
3 3=S3=
3×2
2
4 6=S4=
4×3
2
5 10=S5=
5×4
2
n Sn=
n(n-1)
2
③推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即Sn=
n(n-1)
2
④结论:Sn=
n(n-1)
2
试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出
 
个三角形;
当仅有4个点时,可作出
 
个三角形;
当仅有5个点时,可作出
 
个三角形;

(2)归纳:考察点的个数n和可作出的三角形的个数Sn,发现:(填下表)
点的个数 可连成三角形个数
3
4
5
n
(3)推理:
(4)结论:

查看答案和解析>>

科目:初中数学 来源:2012届河南省虞城县营盘中学中考模拟三数学卷(带解析) 题型:解答题

阅读下列材料并填空。平面上有n个点(n≥2)且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?
(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……
(2)归纳:考察点的个数和可连成直线的条数发现:如下表

点的个数
可作出直线条数
2
1=
3
3=
4
6=
5
10=
……
……
n

(3)推理:平面上有n个点,两点确定一条直线。取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即
(4)结论:
试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出      个三角形;
当仅有4个点时,可作出      个三角形;
当仅有5个点时,可作出      个三角形;
……
(2)归纳:考察点的个数n和可作出的三角形的个数,发现:(填下表)
点的个数
可连成三角形个数
3
 
4
 
5
 
……
 
n
 
(3)推理:                             (4)结论:

查看答案和解析>>

科目:初中数学 来源:2011-2012学年河南省中考模拟三数学卷(解析版) 题型:解答题

阅读下列材料并填空。平面上有n个点(n≥2)且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?

(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……

(2)归纳:考察点的个数和可连成直线的条数发现:如下表

点的个数

可作出直线条数

2

1=

3

3=

4

6=

5

10=

……

……

n

(3)推理:平面上有n个点,两点确定一条直线。取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即

(4)结论:

试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?

(1)分析:

当仅有3个点时,可作出       个三角形;

    当仅有4个点时,可作出       个三角形;

    当仅有5个点时,可作出       个三角形;

……

(2)归纳:考察点的个数n和可作出的三角形的个数,发现:(填下表)

点的个数

可连成三角形个数

3

 

4

 

5

 

……

 

n

 

(3)推理:                              (4)结论:

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列材料并填空.
平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…
②归纳:考察点的个数和可连成直线的条数Sn发现:如下表
点的个数可作出直线条数
21=S2=数学公式
33=S3=数学公式
46=S4=数学公式
510=S5=数学公式
nSn=数学公式
③推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即Sn=数学公式④结论:Sn=数学公式试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出______个三角形;
当仅有4个点时,可作出______个三角形;
当仅有5个点时,可作出______个三角形;

(2)归纳:考察点的个数n和可作出的三角形的个数Sn,发现:(填下表)
点的个数可连成三角形个数
3
4
5
n
(3)推理:
(4)结论:

查看答案和解析>>

科目:初中数学 来源:2012年安徽省中考数学模拟试卷(二十)(解析版) 题型:解答题

阅读下列材料并填空.
平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…
②归纳:考察点的个数和可连成直线的条数Sn发现:如下表
点的个数可作出直线条数
21=S2=
33=S3=
46=S4=
510=S5=
nSn=
③推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即Sn=④结论:Sn=试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出______个三角形;
当仅有4个点时,可作出______个三角形;
当仅有5个点时,可作出______个三角形;

(2)归纳:考察点的个数n和可作出的三角形的个数Sn,发现:(填下表)
点的个数可连成三角形个数
3
4
5
n
(3)推理:
(4)结论:

查看答案和解析>>

科目:初中数学 来源:2012年湖南省怀化市中考全真数学模拟试卷(三)(解析版) 题型:解答题

阅读下列材料并填空.
平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…
②归纳:考察点的个数和可连成直线的条数Sn发现:如下表
点的个数可作出直线条数
21=S2=
33=S3=
46=S4=
510=S5=
nSn=
③推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即Sn=④结论:Sn=试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出______个三角形;
当仅有4个点时,可作出______个三角形;
当仅有5个点时,可作出______个三角形;

(2)归纳:考察点的个数n和可作出的三角形的个数Sn,发现:(填下表)
点的个数可连成三角形个数
3
4
5
n
(3)推理:
(4)结论:

查看答案和解析>>

科目:初中数学 来源:2011年安徽省宣城市华星外国语学校中考数学模拟试卷(解析版) 题型:解答题

阅读下列材料并填空.
平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…
②归纳:考察点的个数和可连成直线的条数Sn发现:如下表
点的个数可作出直线条数
21=S2=
33=S3=
46=S4=
510=S5=
nSn=
③推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即Sn=④结论:Sn=试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出______个三角形;
当仅有4个点时,可作出______个三角形;
当仅有5个点时,可作出______个三角形;

(2)归纳:考察点的个数n和可作出的三角形的个数Sn,发现:(填下表)
点的个数可连成三角形个数
3
4
5
n
(3)推理:
(4)结论:

查看答案和解析>>

科目:初中数学 来源:2011年北京市四中中考数学全真模拟试卷(一)(解析版) 题型:解答题

阅读下列材料并填空.
平面上有n个点(n≥2)且任意三个点不在同一条直线上,过其中的每两点画直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线…
②归纳:考察点的个数和可连成直线的条数Sn发现:如下表
点的个数可作出直线条数
21=S2=
33=S3=
46=S4=
510=S5=
nSn=
③推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即Sn=④结论:Sn=试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出______个三角形;
当仅有4个点时,可作出______个三角形;
当仅有5个点时,可作出______个三角形;

(2)归纳:考察点的个数n和可作出的三角形的个数Sn,发现:(填下表)
点的个数可连成三角形个数
3
4
5
n
(3)推理:
(4)结论:

查看答案和解析>>


同步练习册答案