精英家教网 > 初中数学 > 题目详情
已知⊙O的半径为R,P为⊙O所在平面内某直线l上一点,若OP=R,则直线l与⊙O的公共点个数可能为(  )
A.0B.1C.2D.1或2
相关习题

科目:初中数学 来源: 题型:

已知⊙O的半径为R,P为⊙O所在平面内某直线l上一点,若OP=R,则直线l与⊙O的公共点个数可能为(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O的半径为R,P为⊙O所在平面内某直线l上一点,若OP=R,则直线l与⊙O的公共点个数可能为(  )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省无锡市崇安区九年级(上)期中数学试卷(解析版) 题型:选择题

已知⊙O的半径为R,P为⊙O所在平面内某直线l上一点,若OP=R,则直线l与⊙O的公共点个数可能为( )
A.0
B.1
C.2
D.1或2

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

已知⊙O的半径为R,P为⊙O所在平面内某直线l上一点,若OP=R,则直线l与⊙O的公共点个数可能为


  1. A.
    0
  2. B.
    1
  3. C.
    2
  4. D.
    1或2

查看答案和解析>>

科目:初中数学 来源: 题型:

某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.
精英家教网
根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+
45

(1)喷出的水流距水面的最大高度是多少?
(2)如果不计其他因素,那么水池半径至少为多少时,才能使喷出的水流都落在水池内?
(3)若水流喷出的抛物线形状与(2)相同,喷头距水面0.35米,水池的面积为12.25π平方米,要使水流最远落点恰好落到水池边缘,此时水流最大高度达到多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.

根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是数学公式
(1)喷出的水流距水面的最大高度是多少?
(2)如果不计其他因素,那么水池半径至少为多少时,才能使喷出的水流都落在水池内?
(3)若水流喷出的抛物线形状与(2)相同,喷头距水面0.35米,水池的面积为12.25π平方米,要使水流最远落点恰好落到水池边缘,此时水流最大高度达到多少米?

查看答案和解析>>

科目:初中数学 来源:2009年湖北省荆州市沙市区中考数学二模试卷(解析版) 题型:解答题

(2009•沙市区二模)某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.

根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是
(1)喷出的水流距水面的最大高度是多少?
(2)如果不计其他因素,那么水池半径至少为多少时,才能使喷出的水流都落在水池内?
(3)若水流喷出的抛物线形状与(2)相同,喷头距水面0.35米,水池的面积为12.25π平方米,要使水流最远落点恰好落到水池边缘,此时水流最大高度达到多少米?

查看答案和解析>>

科目:初中数学 来源:江苏省苏州工业园区星海中学2012届九年级中考二模数学试题 题型:044

某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.

(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;

(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(1)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.

查看答案和解析>>

科目:初中数学 来源:四川省中考真题 题型:解答题

某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD。已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米。
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围),当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习。当(1)中S取得最值时,请问这个设计是否可行? 若可行,求出圆的半径;若不可行,请说明理由。

查看答案和解析>>


同步练习册答案