精英家教网 > 高中数学 > 题目详情
设F1、F2是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,P为直线x=
3a
2
上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为(  )
A.
1
2
B.
2
3
C.
3
4
D.
4
5
相关习题

科目:高中数学 来源:黑龙江 题型:单选题

设F1、F2是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,P为直线x=
3a
2
上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为(  )
A.
1
2
B.
2
3
C.
3
4
D.
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,P为直线x=
3a
2
上一点,△F2PF1是底角为30°的等腰三角形,则椭圆E的离心率为
3
4
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,P为直线x=-
3
2
a
上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为(  )
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2是椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,P为直线x=-
3
2
a
上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为(  )
A.
1
2
B.
2
3
C.
3
4
D.
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,A(0,b),连接AF1并延长交椭圆C于B点,若
AF1
=
3
2
F1B
AB
AF2
=5

(1)求椭圆C的方程;
(2)设P是直线x=5上的一点,直线PF2交椭圆C于D、E两点,是否存在这样的点P,使得
AD
AE
?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F1、F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,A(0,b),连接AF1并延长交椭圆C于B点,若
AF1
=
3
2
F1B
AB
AF2
=5

(1)求椭圆C的方程;
(2)设P是直线x=5上的一点,直线PF2交椭圆C于D、E两点,是否存在这样的点P,使得
AD
AE
?若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率为
1
2
,过点F1且与x轴垂直的直线被椭圆截得的线段长为3.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在过点F1的直线m与椭圆E交于A、B两点,且使得F2A⊥F2B?若存在,求出直线m的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)设F1、F2是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,P为直线x=
3a
2
上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆G:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点为F1(-c,0),F2(c,0),M是椭圆上的一点,且满足
F1M
F2M
=0

(1)求离心率的取值范围;
(2)当离心率e取得最小值时,点N(0,3)到椭圆上的点的最远距离为5
2

①求此时椭圆G的方程;
②设斜率为k(k≠0)的直线L与椭圆G相交于不同的两点A、B,Q为AB的中点,问A、B两点能否关于过点P(0,-
3
3
)
、Q的直线对称?若能,求出k的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点F1(-c,0)、F2(c,0),M是椭圆C上一点,且满足F1MF2=
π
3

(1)求椭圆的离心率e的取值范围;(2)设O为坐标原点,P是椭圆C上的一个动点,试求t=
|PF1-PF2|
|OP|
的取值范围.

查看答案和解析>>


同步练习册答案