精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,an>0(n∈N+),a1=1,a3=
4
9
,则直线an+1x-any+3=0与直线3x+2y-7=0的位置关系是(  )
A.平行B.垂直
C.相交但不垂直D.重合
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3与a5的等比中项为2.
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn,求数列{Sn}的通项公式;
(3)是否存在k∈N*,使得
S1
1
+
S2
2
+…+
Sn
n
<k对任意n∈N*恒成立,若存在,求出k的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a3+a5=5,又a3与a5的等比中项为2.
(1)求数列{an}的通项公式;
(2)设bn=5-log2an,数列{bn}的前n项和为Sn,求数列{Sn}的通项公式;
(3)设Tn=
1
S1
+
1
S2
+…+
1
Sn
,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

.在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又2是a3与a5的等比中项.设bn=5-log2an
(1)求数列{bn}的通项公式;
(2)已知数列{bn}的前n项和为SnTn=
1
S1
+
1
S2
+…+
1
Sn
,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=an+1+log2an(n=1,2,3…),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0 (n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3与a5的等比中项为2.
(1)求数列{an}的通项公式
(2)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),a1a5+2a3a5+a2a8=25,且2是a3与a5的等比中项,
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn,当
S1
1
+
S2
2
+…+
Sn
n
最大时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a3+a5=5,又a3与a5的等比中项为2.
(1)求数列{an}的通项公式.
(2)设bn=
1
(4-log2a2n)(5-log2a2n+1)
,记数列{bn}的前n项和Sn,求证:Sn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0(n∈N*)且a4=4,a6=16则数列{an}的公比q是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an+1+log2an(n=1,2,3,…),求数列{bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an+1+log2an(n=1,2,3,…),求数列{bn}的前n项和Sn.

查看答案和解析>>


同步练习册答案