精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
4x+2
,若函数y=f(x+
1
2
)+n
为奇函数,则实数n为(  )
A.-
1
4
B.0C.-
1
2
D.1
相关习题

科目:高中数学 来源:浦东新区一模 题型:单选题

已知函数f(x)=
1
4x+2
,若函数y=f(x+
1
2
)+n
为奇函数,则实数n为(  )
A.-
1
4
B.0C.-
1
2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)已知函数f(x)=
1
4x+2
,若函数y=f(x+
1
2
)+n
为奇函数,则实数n为(  )

查看答案和解析>>

科目:高中数学 来源:黑龙江省大庆实验中学2012届高三10月月考数学文科试题 题型:044

已知函数f(x)=x2-8lnx,g(x)=-x2+14x.

(1)若函数y=f(x)和函数y=g(x)在区间(a,a+1)上均为增函数,求实数a的取值范围;

(2)若方程f(x)=g(x)+m有唯一解,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-tlnx的图象在点(1,f(1))处的切线方程是y=kx+7.
(1)试确定函数f(x)的解析式;
(2)若函数g(x)=-x2+14x,且f(x)与g(x)在区间(a,a+2)上均为单调增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省攀枝花七中高三(下)开学数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=x2-tlnx的图象在点(1,f(1))处的切线方程是y=kx+7.
(1)试确定函数f(x)的解析式;
(2)若函数g(x)=-x2+14x,且f(x)与g(x)在区间(a,a+2)上均为单调增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-tlnx的图象在点(1,f(1))处的切线方程是y=kx+7.
(1)试确定函数f(x)的解析式;
(2)若函数g(x)=-x2+14x,且f(x)与g(x)在区间(a,a+2)上均为单调增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),对任意的实数x满足f(x-2)=f(x+2),且当x∈[-1,3)时,f(x)=
2-|x|,(-1≤x≤1)
k
-x2+4x-3
,(1<x<3)
,若直线y=
1
4
x
与函数f(x)的图象有3个公共点,则实数k的取值范围为
-
35
4
<k<-
3
4
3
4
<k<
35
4
-
35
4
<k<-
3
4
3
4
<k<
35
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
4x+2
(x∈R)
,P1(x1,y1)、P2(x2,y2)是函数y=f(x)图象上两点,且线段P1P2中点P的横坐标是
1
2

(1)求证点P的纵坐标是定值; 
(2)若数列{an}的通项公式是an=f(
n
m
)
(m∈N*),n=1,2…m),求数列{an}的前m项和Sm; 
(3)在(2)的条件下,若m∈N*时,不等式
am
Sm
am+1
Sm+1
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义在实数集R上的函数f1(x),f2(x),令F(x)=f1(x)+f2(x),已知对任意不同的实数x1,x2,|f1(x1)-f1(x2)|>|f2(x1)-f2(x2)|.
(1)若y=f1(x)是区间D上的增函数,能否确定y=F(x)是区间D上的增函数?若能够确定,说明理由;若不能,请举例说明;
(2)若y=f2(x)是区间D上的增函数,能否确定y=F(x)是区间D上的增函数?若能够确定,说明理由;若不能,请举例说明;
(3)求函数f(x)=x2+
14x
(x>0)
的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对定义在实数集R上的函数f1(x),f2(x),令F(x)=f1(x)+f2(x),已知对任意不同的实数x1,x2,|f1(x1)-f1(x2)|>|f2(x1)-f2(x2)|.
(1)若y=f1(x)是区间D上的增函数,能否确定y=F(x)是区间D上的增函数?若能够确定,说明理由;若不能,请举例说明;
(2)若y=f2(x)是区间D上的增函数,能否确定y=F(x)是区间D上的增函数?若能够确定,说明理由;若不能,请举例说明;
(3)求函数f(x)=x2+
1
4x
(x>0)
的单调区间.

查看答案和解析>>


同步练习册答案