精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c的图象的顶点坐标为(2,-1),与y轴的交点坐标为(0,11),则(  )
A.a=1,b=-4,c=-11B.a=3,b=12,c=11
C.a=3,b=-6,c=11D.a=3,b=-12,c=11
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的图象与直线y=25有公共点,且不等式ax2+bx+c>0的解是-
1
2
<x<
1
3
,求a、b、c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的图象过A(t1,y1)、B(t2,y2)两点,且满足a2+(y1+y2)a+y1y2=0.
(1)证明y1=-a或y2=-a;
(2)证明函数f(x)的图象必与x轴有两个交点;
(3)若关于x的不等式f(x)>0的解集为{x|x>m或x<n,n<m<0},解关于x的不等式cx2-bx+a>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的图象的顶点坐标为(2,-1),与y轴的交点坐标为(0,11),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的图象经过点(0,0),其导函数f'(x)=2x+1,当x∈[n,n+1](其中n∈N*)时,f(x)为整数的个数记为an
(1)求a,b,c的值;
(2)求a1及数列{an}的通项公式;
(3)令bn=
1
anan+1
,记{bn}的前n项和为Sn,求证:Sn
1
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的图象经过点(-1,3),(0,0),(2,0).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若?x∈[0,3],3t-t2-3≤f(x)≤12-t2成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的图象在点(1,f(1))处切线的斜率为10,当x=6时,函数f(x)有极值36.
(Ⅰ)求a,b,c的值;
(Ⅱ)若直线l1,l2过点(s,t)且于函数y=f(x)的图象相切,切点坐标分别为A,B,求证直线x=s平分线段AB;
(Ⅲ)若g(x)=10lnx+m,试问:是否存在实数m,使得y=f(x)的图象于y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c的图象与x轴有两个交点,且与 x轴、y轴的交点都在负半轴上(如图),则一定有(  )

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市延庆县高二(上)期中数学试卷(文科)(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c的图象经过点(-1,3),(0,0),(2,0).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若?x∈[0,3],3t-t2-3≤f(x)≤12-t2成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年浙江省温州市苍南中学高三(上)期中数学试卷(解析版) 题型:解答题

已知二次函数f(x)=ax2+bx+c的图象经过点(0,0),其导函数f'(x)=2x+1,当x∈[n,n+1](其中n∈N*)时,f(x)为整数的个数记为an
(1)求a,b,c的值;
(2)求a1及数列{an}的通项公式;
(3)令

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)=ax2+bx+c的图象经过点(-1,3),(0,0),(2,0).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若?x∈[0,3],3t-t2-3≤f(x)≤12-t2成立,求t的取值范围.

查看答案和解析>>


同步练习册答案