精英家教网 > 高中数学 > 题目详情
已知命题P:不等式lg[x(1-x)+1]>0的解集为{x|0<x<1};命题Q:在三角形ABC中,∠A>∠B是cos2
A
2
+
π
4
)<cos2
B
2
+
π
4
)成立的必要而非充分条件,则(  )
A.P真Q假B.P且Q为真C.P或Q为假D.P假Q真
相关习题

科目:高中数学 来源: 题型:

已知命题P:不等式lg[x(1-x)+1]>0的解集为{x|0<x<1};命题Q:在三角形ABC中,∠A>∠B是cos2
A
2
+
π
4
)<cos2
B
2
+
π
4
)成立的必要而非充分条件,则(  )
A、P真Q假B、P且Q为真
C、P或Q为假D、P假Q真

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题P:不等式lg[x(1-x)+1]>0的解集为{x|0<x<1};命题Q:在三角形ABC中,∠A>∠B是cos2
A
2
+
π
4
)<cos2
B
2
+
π
4
)成立的必要而非充分条件,则(  )
A.P真Q假B.P且Q为真C.P或Q为假D.P假Q真

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三10月月考理科数学卷 题型:选择题

已知命题P:不等式lg[x(1-x)+1]>0的解集为{x|0<x<1};命题Q:在三角形ABC中,∠A>∠B是cos2(+)<cos2(+)成立的必要而非充分条件,则(  )

A.PQ假          B.PQ为真      C.PQ为假         D.PQ

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西师大附中高三理科数学月考试卷 题型:选择题

已知命题P:不等式lg[x(1-x)+1]>0的解集为{x|0<x<1};命题Q:在三角形ABC中,∠A>∠B是cos2(+)<cos2(+)成立的必要而非充分条件,则(  )

A.PQ假          B.PQ为真      C.PQ为假         D.PQ

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知命题P:不等式lg[x(1-x)+1]>0的解集为{x|0<x<1};命题Q:在三角形ABC中,∠A>∠B是cos2(+)<cos2(+)成立的必要而非充分条件,则(  )
A.PQB.PQ为真C.PQ为假D.PQ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:不等式lg[x(1-x)+1]>0的解集为{x|0<x<1};命题Q:在三角形ABC中,∠A>∠B是cos2()<cos2()成立的必要而非充分条件,则           (  )

A.PQ假         B.PQ为真      C.PQ为假        D.PQ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:函数f(x)=lg(ax2-x+
a
16
)的定义域为R,命题Q:不等式a>
1
x+1
对x∈(0,+∞)均成立,如果“P或 Q”为真命题,“P且Q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题P:函数f(x)=lg(ax2-x+
a
16
)的定义域为R,命题Q:不等式a>
1
x+1
对x∈(0,+∞)均成立,如果“P或 Q”为真命题,“P且Q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:|x-1|>a(a≥0)和条件q:lg(x2-3x+3)>0,
(1)求满足条件p,q的不等式的解集.
(2)分别利用所给的两个条件作为A,B构造命题:“若A,则B”,问是否存在非负实数a使得构造的原命题为真命题,而其逆命题为假命题,若存在,求出a的取值范围.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省抚州市临川一中高二(下)期中数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=lg[H(x)],且H(x)=
(1)求函数f(x)的定义域;
(2)求函数f(x)在区间[2,4]上的最小值;
(3)已知m∈R,命题p:关于x的不等式H(x)≥m2+2m-3对函数f(x)的定义域上的任意x恒成立;命题q:指数函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>


同步练习册答案