精英家教网 > 高中数学 > 题目详情
设F1和F2为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的离心率为(  )
A.
3
2
B.2C.
5
2
D.3
相关习题

科目:高中数学 来源: 题型:

设F1和F2为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的离心率为(  )
A、
3
2
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中数学 来源:江西 题型:单选题

设F1和F2为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的离心率为(  )
A.
3
2
B.2C.
5
2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1和F2为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点,若F1、F2、P(0,2b)是正三角形的三个顶点,则双曲线的离心率为
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1和F2为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的两个焦点,若F1、F2、P(0,2b)是正三角形的三个顶点,则双曲线的离心率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
5
2
F1
、F2分别为左、右焦点,M为左准线与渐近线在第二象限内的交点,且
F1M
.
F2M
=-
1
4

(I)求双曲线的方程;
(II)设A(m,0)和B(
1
m
,0)
(0<m<1)是x轴上的两点.过点A作斜率不为0的直线l,使得l交双曲线于C、D两点,作直线BC交双曲线于另一点E.证明直线DE垂直于x轴.中心O为圆心,分别以a和b为半径作大圆和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
5
2
F1
、F2分别为左、右焦点,M为左准线与渐近线在第二象限内的交点,且
F1M
.
F2M
=-
1
4

(I)求双曲线的方程;
(II)设A(m,0)和B(
1
m
,0)
(0<m<1)是x轴上的两点.过点A作斜率不为0的直线l,使得l交双曲线于C、D两点,作直线BC交双曲线于另一点E.证明直线DE垂直于x轴.中心O为圆心,分别以a和b为半径作大圆和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,且|F1F2|=4,一条渐近线的倾斜角为60°.
(I)求双曲线C的方程和离心率;
(Ⅱ)若点P在双曲线C的右支上,且△PF1F2的周长为16,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,且|F1F2|=4,一条渐近线的倾斜角为60°.
(I)求双曲线C的方程和离心率;
(Ⅱ)若点P在双曲线C的右支上,且△PF1F2的周长为16,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(
2
+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(
2
+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案