精英家教网 > 高中数学 > 题目详情
椭圆长轴上的两端点A1(-3,0),A2(3,0),两焦点恰好把长轴三等分,则该椭圆的标准方程为(  )
A.
x2
9
+
y2
8
=1
B.
x2
9
+y2=1
C.
x2
36
+
y2
32
=1
D.
x2
36
+y2=1
相关习题

科目:高中数学 来源: 题型:

椭圆长轴上的两端点A1(-3,0),A2(3,0),两焦点恰好把长轴三等分,则该椭圆的标准方程为(  )
A、
x2
9
+
y2
8
=1
B、
x2
9
+y2=1
C、
x2
36
+
y2
32
=1
D、
x2
36
+y2=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆长轴上的两端点A1(-3,0),A2(3,0),两焦点恰好把长轴三等分,则该椭圆的标准方程为(  )
A.
x2
9
+
y2
8
=1
B.
x2
9
+y2=1
C.
x2
36
+
y2
32
=1
D.
x2
36
+y2=1

查看答案和解析>>

科目:高中数学 来源:2007-2008学年湖南省永州市东安一中高二(下)期中数学试卷(文科)(解析版) 题型:选择题

椭圆长轴上的两端点A1(-3,0),A2(3,0),两焦点恰好把长轴三等分,则该椭圆的标准方程为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

椭圆长轴上的两端点A1(-3,0),A2(3,0),两焦点恰好把长轴三等分,则该椭圆的标准方程为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:陕西省月考题 题型:单选题

椭圆长轴上的两端点A1(﹣3,0),A2(3,0),两焦点恰好把长轴三等分,则该椭圆的标准方程为
[     ]
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省宜春市樟树中学高二(上)第四次月考数学试卷(文科)(解析版) 题型:解答题

已知椭圆C的离心率e=,长轴的左右两个端点分别为A1(-2,0),A2(2,0);
(1)求椭圆C的方程;
(2)点M在该椭圆上,且=0,求点M到y轴的距离;
(3)过点(1,0)且斜率为1的直线与椭圆交于P,Q两点,求△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C的离心率e=数学公式,长轴的左右两个端点分别为A1(-2,0),A2(2,0);
(1)求椭圆C的方程;
(2)点M在该椭圆上,且数学公式数学公式=0,求点M到y轴的距离;
(3)过点(1,0)且斜率为1的直线与椭圆交于P,Q两点,求△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的离心率e=
3
2
,长轴的左右两个端点分别为A1(-2,0),A2(2,0);
(1)求椭圆C的方程;
(2)点M在该椭圆上,且
MF1
MF2
=0,求点M到y轴的距离;
(3)过点(1,0)且斜率为1的直线与椭圆交于P,Q两点,求△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的离心率e=
3
2
,长轴的左右两个端点分别为A1(-2,0),A2(2,0);
(1)求椭圆C的方程;
(2)点M在该椭圆上,且
MF1
MF2
=0,求点M到y轴的距离;
(3)过点(1,0)且斜率为1的直线与椭圆交于P,Q两点,求△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省南通市如皋市高二(上)期中数学试卷(理科)(解析版) 题型:解答题

椭圆C:(a>b>0),A1、A2、B1、B2分别为椭圆C的长轴与短轴的端点.
(1)设点M(x,0),若当且仅当椭圆C上的点P在椭圆长轴顶点A1、A2处时,|PM|取得最大值与最小值,求x的取值范围;
(2)若椭圆C上的点P到焦点距离的最大值为3,最小值为l,且与直线l:y=kx+m相交于A,B两点(A,B不是椭圆的左右顶点),并满足AA2⊥BA2.试研究:直线l是否过定点?若过定点,请求出定点坐标,若不过定点,请说明理由.

查看答案和解析>>


同步练习册答案