精英家教网 > 高中数学 > 题目详情
设y=f(x)是偶函数,对于任意正数x都有f(x+2)=-2f(2-x),已知f(-1)=4,则f(-3)等于(  )
A.2B.-2C.8D.-8
相关习题

科目:高中数学 来源: 题型:

设y=f(x)是偶函数,对于任意正数x都有f(x+2)=-2f(2-x),已知f(-1)=4,则f(-3)等于(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设y=f(x)是偶函数,对于任意正数x都有f(x+2)=-2f(2-x),已知f(-1)=4,则f(-3)等于(  )
A.2B.-2C.8D.-8

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆十一中高一(上)数学单元测试07(集合与函数)(解析版) 题型:选择题

设y=f(x)是偶函数,对于任意正数x都有f(x+2)=-2f(2-x),已知f(-1)=4,则f(-3)等于( )
A.2
B.-2
C.8
D.-8

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山西省太原五中高三(下)3月月考数学试卷(文科)(解析版) 题型:选择题

设y=f(x)是偶函数,对于任意正数x都有f(x+2)=-2f(2-x),已知f(-1)=4,则f(-3)等于( )
A.2
B.-2
C.8
D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设y=f(x)是偶函数,对于任意正数x都有f(x+2)=-2f(2-x),已知f(-1)=4,则f(-3)等于


  1. A.
    2
  2. B.
    -2
  3. C.
    8
  4. D.
    -8

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,且对于任意x∈R都有f(x+1)=f(x-1).且在区间[2,3]上,f(x)=-2(x-3)2+4.
(1)求f(
3
2
)
的值;
(2)求出曲线y=f(x)在点(
3
2
,f(
3
2
))
处的切线方程;
(3)若矩形ABCD的两顶点A、B在x轴上,两顶点C、D在函数y=f(x)(0≤x≤2)的 图象上,求这个矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省中山一中高三(上)第二次统练数学试卷(文科)(解析版) 题型:解答题

设f(x)是定义在R上的偶函数,且对于任意x∈R都有f(x+1)=f(x-1).且在区间[2,3]上,f(x)=-2(x-3)2+4.
(1)求的值;
(2)求出曲线y=f(x)在点处的切线方程;
(3)若矩形ABCD的两顶点A、B在x轴上,两顶点C、D在函数y=f(x)(0≤x≤2)的 图象上,求这个矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是定义在R上的偶函数,且对于任意x∈R都有f(x+1)=f(x-1).且在区间[2,3]上,f(x)=-2(x-3)2+4.
(1)求数学公式的值;
(2)求出曲线y=f(x)在点数学公式处的切线方程;
(3)若矩形ABCD的两顶点A、B在x轴上,两顶点C、D在函数y=f(x)(0≤x≤2)的 图象上,求这个矩形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>


同步练习册答案