精英家教网 > 高中数学 > 题目详情
若不等式a>|t-1|-|t-2|对任意t∈R恒成立,则函数f(x)=log
1
a
(x2-5x+6)
的单调递减区间为(  )
A.(
5
2
,+∞)
B.(3,+∞)C.(-∞,
5
2
)
D.(-∞,2)
相关习题

科目:高中数学 来源: 题型:

若不等式a>|t-1|-|t-2|对任意t∈R恒成立,则函数f(x)=log
1
a
(x2-5x+6)
的单调递减区间为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若不等式a>|t-1|-|t-2|对任意t∈R恒成立,则函数f(x)=log
1
a
(x2-5x+6)
的单调递减区间为(  )
A.(
5
2
,+∞)
B.(3,+∞)C.(-∞,
5
2
)
D.(-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若不等式a>|t-1|-|t-2|对任意t∈R恒成立,则函数数学公式的单调递减区间为


  1. A.
    数学公式
  2. B.
    (3,+∞)
  3. C.
    数学公式
  4. D.
    (-∞,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=a-数学公式
(1)求证:不论a为何实数,函数f(x)在R上总为增函数;
(2)若函数f(x)为奇函数,求a的值;
(3)当函数f(x)为奇函数时,若对任意的t∈R,不等式f(mt2+1)+f(1-mt)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京十三中高一(上)期中数学试卷(解析版) 题型:解答题

已知函数f(x)=a-
(1)求证:不论a为何实数,函数f(x)在R上总为增函数;
(2)若函数f(x)为奇函数,求a的值;
(3)当函数f(x)为奇函数时,若对任意的t∈R,不等式f(mt2+1)+f(1-mt)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(A类)定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)•f(b),当x>0时,有f(x)>1,其中f(1)=2
(1)求f(0)、f(-1)的值;  (2)证明y=f(x)在(0,+∞)上是增函数;(3)求不等式f(x+1)<4的解集.
(B类)已知定义在R上的奇函数f(x)= 
-2x+b
2x+1+a

(1)求a,b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
对一切实数x及m恒成立,求实数k的取值范围;
(3)定义:若存在一个非零常数T,使得f(x+T)=f(x)对定义域中的任何实数x都恒成立,那么,我们把f(x)叫以T为周期的周期函数,它特别有性质:对定义域中的任意x,f(x+nT)=f(x),(n∈Z).若函数g(x0是定义在R上的周期为2的奇函数,且当x∈(-1,1)时,g(x)=f(x)-x,求方程g(x)=0的所有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的奇函数,对于任意a,b∈R且当a+b≠0时,都满足
f(a)+f(b)a+b
>0

(1)求证:f(x)在R上是的增函数;
(2)若对任意的t∈R,不等式f(mt2+1)+f(1-mt)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=数学公式,给出下列四个命题:
(1)当a>0时,函数f(x)的值域为[0,+∞),
(2)对于任意的x1,x2∈R,且x1≠x2,若数学公式>0恒成立,则a∈[0,3); 
(3)对于任意的x1,x2∈(0,+∞),且x1≠x2,恒有数学公式<f(数学公式); 
(4)对于任意的x1,x2∈(0,+∞),且x1≠x2,若不等式|f(x1)-f(x2)|>t|x1-x2|恒成立,则t的最大值为0.其中正确的有________(只填相应的序号)

查看答案和解析>>

科目:高中数学 来源:2010年浙江省台州市醒民高中高考培优数学试卷(文科)(解析版) 题型:解答题

已知函数f(x)=,给出下列四个命题:
(1)当a>0时,函数f(x)的值域为[0,+∞),
(2)对于任意的x1,x2∈R,且x1≠x2,若>0恒成立,则a∈[0,3);  
(3)对于任意的x1,x2∈(0,+∞),且x1≠x2,恒有<f();  
(4)对于任意的x1,x2∈(0,+∞),且x1≠x2,若不等式|f(x1)-f(x2)|>t|x1-x2|恒成立,则t的最大值为0.其中正确的有    (只填相应的序号)

查看答案和解析>>


同步练习册答案